[[phonetic-matching]]
=== Phonetic Matching
In a last, desperate, attempt to match something, anything, we could resort to
searching for words that sound similar, ((("typoes and misspellings", "phonetic matching")))((("phonetic matching")))even if their spelling differs.
Several algorithms exist for converting words into a phonetic
representation.((("phonetic algorithms"))) The http://en.wikipedia.org/wiki/Soundex[Soundex] algorithm is
the granddaddy of them all, and most other phonetic algorithms are
improvements or specializations of Soundex, such as
http://en.wikipedia.org/wiki/Metaphone[Metaphone] and
http://en.wikipedia.org/wiki/Metaphone#Double_Metaphone[Double Metaphone]
(which expands phonetic matching to languages other than English),
http://en.wikipedia.org/wiki/Caverphone[Caverphone] for matching names in New
Zealand, the
http://bit.ly/1E47qoB[Beider-Morse] algorithm, which adopts the Soundex algorithm
for better matching of German and Yiddish names, and the
http://de.wikipedia.org/wiki/K%C3%B6lner_Phonetik[Kölner Phonetik] for better
handling of German words.
The thing to take away from this list is that phonetic algorithms are fairly
crude, and ((("languages", "phonetic algorithms")))very specific to the languages they were designed for, usually
either English or German. This limits their usefulness. Still, for certain
purposes, and in combination with other techniques, phonetic matching can be a
useful tool.
First, you will need to install ((("Phonetic Analysis plugin")))the Phonetic Analysis plug-in from
http://bit.ly/1CreKJQ on every node
in the cluster, and restart each node.
Then, you can create a custom analyzer that uses one of the
phonetic token filters ((("phonetic matching", "creating a phonetic analyzer")))and try it out:
[source,json]
-----------------------------------
PUT /my_index
{
"settings": {
"analysis": {
"filter": {
"dbl_metaphone": { <1>
"type": "phonetic",
"encoder": "double_metaphone"
}
},
"analyzer": {
"dbl_metaphone": {
"tokenizer": "standard",
"filter": "dbl_metaphone" <2>
}
}
}
}
}
-----------------------------------
<1> First, configure a custom `phonetic` token filter that uses the
`double_metaphone` encoder.
<2> Then use the custom token filter in a custom analyzer.
Now we can test it with the `analyze` API:
[source,json]
-----------------------------------
GET /my_index/_analyze?analyzer=dbl_metaphone
Smith Smythe
-----------------------------------
Each of `Smith` and `Smythe` produce two tokens in the same position: `SM0`
and `XMT`. Running `John`, `Jon`, and `Johnnie` through the analyzer will all
produce the two tokens `JN` and `AN`, while `Jonathon` results in the tokens
`JN0N` and `ANTN`.
The phonetic analyzer can be used just like any other analyzer. First map a
field to use it, and then index some data:
[source,json]
-----------------------------------
PUT /my_index/_mapping/my_type
{
"properties": {
"name": {
"type": "string",
"fields": {
"phonetic": { <1>
"type": "string",
"analyzer": "dbl_metaphone"
}
}
}
}
}
PUT /my_index/my_type/1
{
"name": "John Smith"
}
PUT /my_index/my_type/2
{
"name": "Jonnie Smythe"
}
-----------------------------------
<1> The `name.phonetic` field uses the custom `dbl_metaphone` analyzer.
The `match` query can be used for searching:
[source,json]
-----------------------------------
GET /my_index/my_type/_search
{
"query": {
"match": {
"name.phonetic": {
"query": "Jahnnie Smeeth",
"operator": "and"
}
}
}
}
-----------------------------------
This query returns both documents, demonstrating just how coarse phonetic
matching is. ((("phonetic matching", "purpose of"))) Scoring with a phonetic algorithm is pretty much worthless. The
purpose of phonetic matching is not to increase precision, but to increase
recall--to spread the net wide enough to catch any documents that might
possibly match.((("recall", "increasing with phonetic matching")))
It usually makes more sense to use phonetic algorithms when retrieving results
which will be consumed and post-processed by another computer, rather than by
human users.
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion