[[stopwords]]
== Stopwords: Performance Versus Precision
Back in the early days of information retrieval,((("stopwords", "performance versus precision"))) disk space and memory were
limited to a tiny fraction of what we are accustomed to today. It was
essential to make your index as small as possible. Every kilobyte saved meant
a significant improvement in performance. Stemming (see <<stemming>>) was
important, not just for making searches broader and increasing retrieval in
the same way that we use it today, but also as a tool for compressing index
size.
Another way to reduce index size is simply to _index fewer words_. For search
purposes, some words are more important than others. A significant reduction
in index size can be achieved by indexing only the more important terms.
So which terms can be left out? ((("term frequency", "high and low"))) We can divide terms roughly into two groups:
Low-frequency terms::
Words that appear in relatively few documents in the collection. Because of their
rarity,((("weight", "low frequency terms"))) they have a high value, or _weight_.
High-frequency terms::
Common words that appear in many documents in the index, such as `the`, `and`, and
`is`. These words have a low weight and contribute little to the relevance
score.
[TIP]
==================================================
Of course, frequency is really a scale rather than just two points labeled
_low_ and _high_. We just draw a line at some arbitrary point and say that any
terms below that line are low frequency and above the line are high frequency.
==================================================
Which terms are low or high frequency depend on the documents themselves. The
word `and` may be a low-frequency term if all the documents are in Chinese.
In a collection of documents about databases, the word `database` may be a
high-frequency term with little value as a search term for that particular
collection.
That said, for any language there are words that occur very
commonly and that seldom add value to a search.((("English", "stopwords"))) The default English
stopwords used in Elasticsearch are as follows:
a, an, and, are, as, at, be, but, by, for, if, in, into, is, it,
no, not, of, on, or, such, that, the, their, then, there, these,
they, this, to, was, will, with
These _stopwords_ can usually be filtered out before indexing with little
negative impact on retrieval. But is it a good idea to do so?
[[pros-cons-stopwords]]
[float="true"]
=== Pros and Cons of Stopwords
We have more disk space, more RAM, and ((("stopwords", "pros and cons of")))better compression algorithms than
existed back in the day. Excluding the preceding 33 common words from the index
will save only about 4MB per million documents. Using stopwords for the sake
of reducing index size is no longer a valid reason. (However, there is one
caveat to this statement, which we discuss in <<stopwords-phrases>>.)
On top of that, by removing words from the index, we are reducing our ability
to perform certain types of searches. Filtering out the words listed previously
prevents us from doing the following:
* Distinguishing _happy_ from _not happy_.
* Searching for the band The The.
* Finding Shakespeare's quotation ``To be, or not to be''
* Using the country code for Norway: `no`
The primary advantage of removing stopwords is performance. Imagine that we
search an index with one million documents for the word `fox`. Perhaps `fox`
appears in only 20 of them, which means that Elastisearch has to calculate the
relevance `_score` for 20 documents in order to return the top 10. Now, we
change that to a search for `the OR fox`. The word `the` probably occurs in
almost all the documents, which means that Elasticsearch has to calculate
the `_score` for all one million documents. This second query simply cannot
perform as well as the first.
Fortunately, there are techniques that we can use to keep common words
searchable, while still maintaining good performance. First, we'll start with
how to use stopwords.
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion