##查询阶段
在初始化_查询阶段_(_query phase_),查询被向索引中的每个分片副本(原本或副本)广播。每个分片在本地执行搜索并且建立了匹配document的_优先队列_(_priority queue_)。
> ####优先队列
> 一个_优先队列_(_priority queue_ is)只是一个存有_前n个_(_top-n_)匹配document的有序列表。这个优先队列的大小由分页参数from和size决定。例如,下面这个例子中的搜索请求要求优先队列要能够容纳100个document
``` JavaScript
GET /_search
{
"from": 90,
"size": 10
}
```
这个查询的过程被描述在图分布式搜索查询阶段中。
![Query phase of distributed search](https://box.kancloud.cn/65b842360d518f3125582e51d79b4062_750x337.png)
图1 分布式搜索查询阶段
查询阶段包含以下三步:
1.客户端发送一个`search(搜索)`请求给`Node 3`,`Node 3`创建了一个长度为`from+size`的空优先级队列。
2.`Node 3` 转发这个搜索请求到索引中每个分片的原本或副本。每个分片在本地执行这个查询并且结果将结果到一个大小为`from+size`的有序本地优先队列里去。
3.每个分片返回document的ID和它优先队列里的所有document的排序值给协调节点`Node 3`。`Node 3`把这些值合并到自己的优先队列里产生全局排序结果。
当一个搜索请求被发送到一个节点Node,这个节点就变成了协调节点。这个节点的工作是向所有相关的分片广播搜索请求并且把它们的响应整合成一个全局的有序结果集。这个结果集会被返回给客户端。
第一步是向索引里的每个节点的分片副本广播请求。就像document的`GET`请求一样,搜索请求可以被每个分片的原本或任意副本处理。这就是更多的副本(当结合更多的硬件时)如何提高搜索的吞吐量的方法。对于后续请求,协调节点会轮询所有的分片副本以分摊负载。
每一个分片在本地执行查询和建立一个长度为`from+size`的有序优先队列——这个长度意味着它自己的结果数量就足够满足全局的请求要求。分片返回一个轻量级的结果列表给协调节点。只包含documentID值和排序需要用到的值,例如`_score`。
协调节点将这些分片级的结果合并到自己的有序优先队列里。这个就代表了最终的全局有序结果集。到这里,查询阶段结束。
整个过程类似于归并排序算法,先分组排序再归并到一起,对于这种分布式场景非常适用。
> ###注意
> 一个索引可以由一个或多个原始分片组成,所以一个对于单个索引的搜索请求也需要能够把来自多个分片的结果组合起来。一个对于
_多(multiple)_或_全部(all)_索引的搜索的工作机制和这完全一致——仅仅是多了一些分片而已。
<!--
=== Query Phase
During the initial _query phase_, the((("distributed search execution", "query phase")))((("query phase of distributed search"))) query is broadcast to a shard copy (a
primary or replica shard) of every shard in the index. Each shard executes
the search locally and ((("priority queue")))builds a _priority queue_ of matching documents.
.Priority Queue
****
A _priority queue_ is just a sorted list that holds the _top-n_ matching
documents. The size of the priority queue depends on the pagination
parameters `from` and `size`. For example, the following search request
would require a priority queue big enough to hold 100 documents:
[source,js]
--------------------------------------------------
GET /_search
{
"from": 90,
"size": 10
}
--------------------------------------------------
****
The query phase process is depicted in <<img-distrib-search>>.
[[img-distrib-search]]
.Query phase of distributed search
image::images/elas_0901.png["Query phase of distributed search"]
The query phase consists of the following three steps:
1. The client sends a `search` request to `Node 3`, which creates an empty
priority queue of size `from + size`.
2. `Node 3` forwards the search request to a primary or replica copy of every
shard in the index. Each shard executes the query locally and adds the
results into a local sorted priority queue of size `from + size`.
3. Each shard returns the doc IDs and sort values of all the docs in its
priority queue to the coordinating node, `Node 3`, which merges these
values into its own priority queue to produce a globally sorted list of
results.
When a search request is sent to a node, that node becomes the coordinating
node.((("nodes", "coordinating node for search requests"))) It is the job of this node to broadcast the search request to all
involved shards, and to gather their responses into a globally sorted result
set that it can return to the client.
The first step is to broadcast the request to a shard copy of every node in
the index. Just like <<distrib-read,document `GET` requests>>, search requests
can be handled by a primary shard or by any of its replicas.((("shards", "handling search requests"))) This is how more
replicas (when combined with more hardware) can increase search throughput.
A coordinating node will round-robin through all shard copies on subsequent
requests in order to spread the load.
Each shard executes the query locally and builds a sorted priority queue of
length `from + size`—in other words, enough results to satisfy the global
search request all by itself. It returns a lightweight list of results to the
coordinating node, which contains just the doc IDs and any values required for
sorting, such as the `_score`.
The coordinating node merges these shard-level results into its own sorted
priority queue, which represents the globally sorted result set. Here the query
phase ends.
[NOTE]
====
An index can consist of one or more primary shards,((("indices", "multi-index search"))) so a search request
against a single index needs to be able to combine the results from multiple
shards. A search against _multiple_ or _all_ indices works in exactly the same
way--there are just more shards involved.
====
-->
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion