ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
[[algorithmic-stemmers]] === Algorithmic Stemmers Most of the stemmers available in Elasticsearch are algorithmic((("stemming words", "algorithmic stemmers"))) in that they apply a series of rules to a word in order to reduce it to its root form, such as stripping the final `s` or `es` from plurals. They don't have to know anything about individual words in order to stem them. These algorithmic stemmers have the advantage that they are available out of the box, are fast, use little memory, and work well for regular words. The downside is that they don't cope well with irregular words like `be`, `are`, and `am`, or `mice` and `mouse`. One of the earliest stemming algorithms((("English", "stemmers for")))((("Porter stemmer for English"))) is the Porter stemmer for English, which is still the recommended English stemmer today. Martin Porter subsequently went on to create the http://snowball.tartarus.org/[Snowball language] for creating stemming algorithms, and a number((("Snowball langauge (stemmers)"))) of the stemmers available in Elasticsearch are written in Snowball. [TIP] ================================================== The http://bit.ly/1IObUjZ[`kstem` token filter] is a stemmer for English which((("kstem token filter"))) combines the algorithmic approach with a built-in dictionary. The dictionary contains a list of root words and exceptions in order to avoid conflating words incorrectly. `kstem` tends to stem less aggressively than the Porter stemmer. ================================================== ==== Using an Algorithmic Stemmer While you ((("stemming words", "algorithmic stemmers", "using")))can use the http://bit.ly/17LseXy[`porter_stem`] or http://bit.ly/1IObUjZ[`kstem`] token filter directly, or create a language-specific Snowball stemmer with the http://bit.ly/1Cr4tNI[`snowball`] token filter, all of the algorithmic stemmers are exposed via a single unified interface: the http://bit.ly/1AUfpDN[`stemmer` token filter], which accepts the `language` parameter. For instance, perhaps you find the default stemmer used by the `english` analyzer to be too aggressive and ((("english analyzer", "default stemmer, examining")))you want to make it less aggressive. The first step is to look up the configuration for the `english` analyzer in the http://bit.ly/1xtdoJV[language analyzers] documentation, which shows the following: [source,js] -------------------------------------------------- { "settings": { "analysis": { "filter": { "english_stop": { "type": "stop", "stopwords": "_english_" }, "english_keywords": { "type": "keyword_marker", <1> "keywords": [] }, "english_stemmer": { "type": "stemmer", "language": "english" <2> }, "english_possessive_stemmer": { "type": "stemmer", "language": "possessive_english" <2> } }, "analyzer": { "english": { "tokenizer": "standard", "filter": [ "english_possessive_stemmer", "lowercase", "english_stop", "english_keywords", "english_stemmer" ] } } } } } -------------------------------------------------- <1> The `keyword_marker` token filter lists words that should not be stemmed.((("keyword_marker token filter"))) This defaults to the empty list. <2> The `english` analyzer uses two stemmers: the `possessive_english` and the `english` stemmer. The ((("english stemmer")))((("possessive_english stemmer")))possessive stemmer removes `'s` from any words before passing them on to the `english_stop`, `english_keywords`, and `english_stemmer`. Having reviewed the current configuration, we can use it as the basis for a new analyzer, with((("english analyzer", "customizing the stemmer"))) the following changes: * Change the `english_stemmer` from `english` (which maps to the http://bit.ly/17LseXy[`porter_stem`] token filter) to `light_english` (which maps to the less aggressive http://bit.ly/1IObUjZ[`kstem`] token filter). * Add the <<asciifolding-token-filter,`asciifolding`>> token filter to remove any diacritics from foreign words.((("asciifolding token filter"))) * Remove the `keyword_marker` token filter, as we don't need it. (We discuss this in more detail in <<controlling-stemming>>.) Our new custom analyzer would look like this: [source,js] -------------------------------------------------- PUT /my_index { "settings": { "analysis": { "filter": { "english_stop": { "type": "stop", "stopwords": "_english_" }, "light_english_stemmer": { "type": "stemmer", "language": "light_english" <1> }, "english_possessive_stemmer": { "type": "stemmer", "language": "possessive_english" } }, "analyzer": { "english": { "tokenizer": "standard", "filter": [ "english_possessive_stemmer", "lowercase", "english_stop", "light_english_stemmer", <1> "asciifolding" <2> ] } } } } } -------------------------------------------------- <1> Replaced the `english` stemmer with the less aggressive `light_english` stemmer <2> Added the `asciifolding` token filter