#### 2.3.1 Serializable接口
**Serializable是Java所提供的一个序列化接口,它是一个空接口,为对象提供标准的序列化和反序列化操作**。使用Serializable来实现序列化相当简单,只需要在类的声明中指定一个类似下面的标识即可自动实现默认的序列化过程。
参考——[Java中的对象序列化](https://www.kancloud.cn/alex_wsc/java/461699)
```
private static final long serialVersionUID = 8711368828010083044L
```
在**Android中也提供了新的序列化方式,那就是Parcelable接口**,使用Parcelable来实现对象的序列号,其过程要稍微复杂一些,本节先介绍Serializable接口。上面提到,**想让一个对象实现序列化,只需要这个类实现Serializable接口并声明一个serialVersionUID即可,实际上,甚至这个serialVersionUID也不是必需的,我们不声明这个serialVersionUID同样也可以实现序列化,但是这将会对反序列化过程产生影响**,具体什么影响后面再介绍。
User类就是一个实现了Serializable接口的类,它是可以被序列化和反序列化的,如下所示。
public class User implements Serializable {
private static final long serialVersionUID = 519067123721295773L;
public int userId;
public String userName;
public boolean isMale;
...
}
**通过Serializable方式来实现对象的序列化,实现起来非常简单,几乎所有工作都被系统自动完成了**。
**如何进行对象的序列化和反序列化也非常简单,只需要采用ObjectOutputStream和ObjectInputStream即可轻松实现**。下面举个简单的例子。
//序列化过程
User user = new User(0, "jake", true);
ObjectOutputStream out = new ObjectOutputStream(
new FileOutputStream("cache.txt"));
out.writeObject(user);
out.close();
//反序列化过程
ObjectInputStream in = new ObjectInputStream(
new FileInputStream("cache.txt"));
User newUser = (User) in.readObject();
in.close();
上述代码演示了采用Serializable方式序列化对象的典型过程,很简单,**只需要把实现了Serializable接口的User对象写到文件中就可以快速恢复了,恢复后的对象newUser和user的内容完全一样,但是两者并不是同一个对象**。
刚开始提到,即使不指定serialVersionUID也可以实现序列化,那到底要不要指定呢?如果指定的话,serialVersionUID后面那一长串数字又是什么含义呢?我们要明白,**系统既然提供了这个serialVersionUID,那么它必须是有用的。这个serialVersionUID是用来辅助序列化和反序列化过程的,原则上序列化后的数据中的serialVersionUID只有和当前类的serialVersionUID相同才能够正常地被反序列化**。
serialVersionUID的详细工作机制是这样的:**序列化的时候系统会把当前类的serialVersionUID写入序列化的文件中(也可能是其他中介),当反序列化的时候系统会去检测文件中的serialVersionUID,看它是否和当前类的serialVersionUID一致,如果一致就说明序列化的类的版本和当前类的版本是相同的,这个时候可以成功反序列化;否则就说明当前类和序列化的类相比发生了某些变换,比如成员变量的数量、类型可能发生了改变,这个时候是无法正常反序列化的**,因此会报如下错误:
```
java.io.InvalidClassException: Main; local class incompatible: stream
classdesc serialVersionUID = 8711368828010083044, local class serial-
VersionUID = 8711368828010083043。
```
**一般来说,我们应该手动指定serialVersionUID的值,比如1L,也可以让Eclipse根据当前类的结构自动去生成它的hash值,这样序列化和反序列化时两者的serialVersionUID是相同的,因此可以正常进行反序列化。如果不手动指定serialVersionUID的值,反序列化时当前类有所改变,比如增加或者删除了某些成员变量,那么系统就会重新计算当前类的hash值并把它赋值给serialVersionUID,这个时候当前类的serialVersionUID就和序列化的数据中的serialVersionUID不一致,于是反序列化失败,程序就会出现crash。所以,我们可以明显感觉到serialVersionUID的作用,当我们手动指定了它以后,就可以在很大程度上避免反序列化过程的失败。比如当版本升级后,我们可能删除了某个成员变量也可能增加了一些新的成员变量,这个时候我们的反向序列化过程仍然能够成功,程序仍然能够最大限度地恢复数据,相反,如果不指定serialVersionUID的话,程序则会挂掉。当然我们还要考虑另外一种情况,如果类结构发生了非常规性改变,比如修改了类名,修改了成员变量的类型,这个时候尽管serialVersionUID验证通过了,但是反序列化过程还是会失败,因为类结构有了毁灭性的改变,根本无法从老版本的数据中还原出一个新的类结构的对象**。
根据上面的分析,我们可以知道,给serialVersionUID指定为1L或者采用Eclipse根据当前类结构去生成的hash值,这两者并没有本质区别,效果完全一样。
以下两点需要特别提一下,
1. 首先静态成员变量属于类不属于对象,所以不会参与序列化过程;
2. 其次用transient关键字标记的成员变量不参与序列化过程。
另外,**系统的默认序列化过程也是可以改变的,通过实现如下两个方法即可重写系统默认的序列化和反序列化过程**,具体怎么去重写这两个方法就是很简单的事了,这里就不再详细介绍了,毕竟这不是本章的重点,而且大部分情况下我们不需要重写这两个方法。
private void writeObject(java.io.ObjectOutputStream out)
throws IOException {
// write 'this' to 'out'...
}
private void readObject(java.io.ObjectInputStream in)
throws IOException, ClassNotFoundException {
// populate the fields of 'this' from the data in 'in'...
}
- 前言
- 第1章 Activity的生命周期和启动模式
- 1.1 Activity的生命周期全面分析
- 1.1.1 典型情况下的生命周期分析
- 1.1.2 异常情况下的生命周期分析
- 1.2 Activity的启动模式
- 1.2.1 Activity的LaunchMode
- 1.2.2 Activity的Flags
- 1.3 IntentFilter的匹配规则
- 第2章 IPC机制
- 2.1 Android IPC简介
- 2.2 Android中的多进程模式
- 2.2.1 开启多进程模式
- 2.2.2 多进程模式的运行机制
- 2.3 IPC基础概念介绍
- 2.3.1 Serializable接口
- 2.3.2 Parcelable接口
- 2.3.3 Binder
- 2.4 Android中的IPC方式
- 2.4.1 使用Bundle
- 2.4.2 使用文件共享
- 2.4.3 使用Messenger
- 2.4.4 使用AIDL
- 2.4.5 使用ContentProvider
- 2.4.6 使用Socket
- 2.5 Binder连接池
- 2.6 选用合适的IPC方式
- 第3章 View的事件体系
- 3.1 View基础知识
- 3.1.1 什么是View
- 3.1.2 View的位置参数
- 3.1.3 MotionEvent和TouchSlop
- 3.1.4 VelocityTracker、GestureDetector和Scroller
- 3.2 View的滑动
- 3.2.1 使用scrollTo/scrollBy
- 3.2.2 使用动画
- 3.2.3 改变布局参数
- 3.2.4 各种滑动方式的对比
- 3.3 弹性滑动
- 3.3.1 使用Scroller7
- 3.3.2 通过动画
- 3.3.3 使用延时策略
- 3.4 View的事件分发机制
- 3.4.1 点击事件的传递规则
- 3.4.2 事件分发的源码解析
- 3.5 View的滑动冲突
- 3.5.1 常见的滑动冲突场景
- 3.5.2 滑动冲突的处理规则
- 3.5.3 滑动冲突的解决方式
- 第4章 View的工作原理
- 4.1 初识ViewRoot和DecorView
- 4.2 理解MeasureSpec
- 4.2.1 MeasureSpec
- 4.2.2 MeasureSpec和LayoutParams的对应关系
- 4.3 View的工作流程
- 4.3.1 measure过程
- 4.3.2 layout过程
- 4.3.3 draw过程
- 4.4 自定义View
- 4.4.1 自定义View的分类
- 4.4.2 自定义View须知
- 4.4.3 自定义View示例
- 4.4.4 自定义View的思想
- 第5章 理解RemoteViews
- 5.1 RemoteViews的应用
- 5.1.1 RemoteViews在通知栏上的应用
- 5.1.2 RemoteViews在桌面小部件上的应用
- 5.1.3 PendingIntent概述
- 5.2 RemoteViews的内部机制
- 5.3 RemoteViews的意义
- 第6章 Android的Drawable
- 6.1 Drawable简介
- 6.2 Drawable的分类
- 6.2.1 BitmapDrawable2
- 6.2.2 ShapeDrawable
- 6.2.3 LayerDrawable
- 6.2.4 StateListDrawable
- 6.2.5 LevelListDrawable
- 6.2.6 TransitionDrawable
- 6.2.7 InsetDrawable
- 6.2.8 ScaleDrawable
- 6.2.9 ClipDrawable
- 6.3 自定义Drawable
- 第7章 Android动画深入分析
- 7.1 View动画
- 7.1.1 View动画的种类
- 7.1.2 自定义View动画
- 7.1.3 帧动画
- 7.2 View动画的特殊使用场景
- 7.2.1 LayoutAnimation
- 7.2.2 Activity的切换效果
- 7.3 属性动画
- 7.3.1 使用属性动画
- 7.3.2 理解插值器和估值器 /
- 7.3.3 属性动画的监听器
- 7.3.4 对任意属性做动画
- 7.3.5 属性动画的工作原理
- 7.4 使用动画的注意事项
- 第8章 理解Window和WindowManager
- 8.1 Window和WindowManager
- 8.2 Window的内部机制
- 8.2.1 Window的添加过程
- 8.2.2 Window的删除过程
- 8.2.3 Window的更新过程
- 8.3 Window的创建过程
- 8.3.1 Activity的Window创建过程
- 8.3.2 Dialog的Window创建过程
- 8.3.3 Toast的Window创建过程
- 第9章 四大组件的工作过程
- 9.1 四大组件的运行状态
- 9.2 Activity的工作过程
- 9.3 Service的工作过程
- 9.3.1 Service的启动过程
- 9.3.2 Service的绑定过程
- 9.4 BroadcastReceiver的工作过程
- 9.4.1 广播的注册过程
- 9.4.2 广播的发送和接收过程
- 9.5 ContentProvider的工作过程
- 第10章 Android的消息机制
- 10.1 Android的消息机制概述
- 10.2 Android的消息机制分析
- 10.2.1 ThreadLocal的工作原理
- 10.2.2 消息队列的工作原理
- 10.2.3 Looper的工作原理
- 10.2.4 Handler的工作原理
- 10.3 主线程的消息循环
- 第11章 Android的线程和线程池
- 11.1 主线程和子线程
- 11.2 Android中的线程形态
- 11.2.1 AsyncTask
- 11.2.2 AsyncTask的工作原理
- 11.2.3 HandlerThread
- 11.2.4 IntentService
- 11.3 Android中的线程池
- 11.3.1 ThreadPoolExecutor
- 11.3.2 线程池的分类
- 第12章 Bitmap的加载和Cache
- 12.1 Bitmap的高效加载
- 12.2 Android中的缓存策略
- 12.2.1 LruCache
- 12.2.2 DiskLruCache
- 12.2.3 ImageLoader的实现446
- 12.3 ImageLoader的使用
- 12.3.1 照片墙效果
- 12.3.2 优化列表的卡顿现象
- 第13章 综合技术
- 13.1 使用CrashHandler来获取应用的crash信息
- 13.2 使用multidex来解决方法数越界
- 13.3 Android的动态加载技术
- 13.4 反编译初步
- 13.4.1 使用dex2jar和jd-gui反编译apk
- 13.4.2 使用apktool对apk进行二次打包
- 第14章 JNI和NDK编程
- 14.1 JNI的开发流程
- 14.2 NDK的开发流程
- 14.3 JNI的数据类型和类型签名
- 14.4 JNI调用Java方法的流程
- 第15章 Android性能优化
- 15.1 Android的性能优化方法
- 15.1.1 布局优化
- 15.1.2 绘制优化
- 15.1.3 内存泄露优化
- 15.1.4 响应速度优化和ANR日志分析
- 15.1.5 ListView和Bitmap优化
- 15.1.6 线程优化
- 15.1.7 一些性能优化建议
- 15.2 内存泄露分析之MAT工具
- 15.3 提高程序的可维护性