#### 2.3.3 Binder
Binder是一个很深入的话题,笔者也看过一些别人写的Binder相关的文章,发现很少有人能把它介绍清楚,不是深入代码细节不能自拔,就是长篇大论不知所云,看完后都是晕晕的感觉。所以,本节笔者不打算深入探讨Binder的底层细节,因为Binder太复杂了。本节的侧重点是介绍Binder的使用以及上层原理,为接下来的几节内容做铺垫。
* 直观来说,Binder是Android中的一个类,它继承了IBinder接口。
* 从IPC角度来说,Binder是Android中的一种跨进程通信方式,Binder还可以理解为一种虚拟的物理设备,它的设备驱动是/dev/binder,该通信方式在Linux中没有;
* 从Android Framework角度来说,Binder是ServiceManager连接各种Manager(ActivityManager、WindowManager,等等)和相应ManagerService的桥梁;
* 从Android应用层来说,Binder是客户端和服务端进行通信的媒介,当bindService的时候,服务端会返回一个包含了服务端业务调用的Binder对象,通过这个Binder对象,客户端就可以获取服务端提供的服务或者数据,这里的服务包括普通服务和基于AIDL的服务。
:-: ![](https://img.kancloud.cn/03/d5/03d5b81e6d32b825b2a2fea4a6babce9_671x436.jpg)
Binder流程图
**Android开发中,Binder主要用在Service中,包括AIDL和Messenger,其中普通Service中的Binder不涉及进程间通信,所以较为简单,无法触及Binder的核心,而Messenger的底层其实是AIDL,Messenger、AIDL、ContentProvider的底层实现都Binder,所以这里选择用AIDL来分析Binder的工作机制**。
为了分析Binder的工作机制,我们需要新建一个AIDL示例,SDK会自动为我们生产AIDL所对应的Binder类,然后我们就可以分析Binder的工作过程。还是采用本章开始时用的例子,新建Java包com.ryg.chapter_2.aidl,然后新建三个文件Book.java、Book.aidl和IBookManager.aidl,代码如下所示。
**Book.java**
```
package com.ryg.chapter_2.aidl;
import android.os.Parcel;
import android.os.Parcelable;
public class Book implements Parcelable {
public int bookId;
public String bookName;
public Book() {
}
public Book(int bookId, String bookName) {
this.bookId = bookId;
this.bookName = bookName;
}
public int describeContents() {
return 0;
}
public void writeToParcel(Parcel out, int flags) {
out.writeInt(bookId);
out.writeString(bookName);
}
public static final Parcelable.Creator<Book> CREATOR = new Parcelable.Creator<Book>() {
public Book createFromParcel(Parcel in) {
return new Book(in);
}
public Book[] newArray(int size) {
return new Book[size];
}
};
private Book(Parcel in) {
bookId = in.readInt();
bookName = in.readString();
}
@Override
public String toString() {
return String.format("[bookId:%s, bookName:%s]", bookId, bookName);
}
}
```
**Book.aidl**
```
package com.ryg.chapter_2.aidl;
parcelable Book;
```
**IBookManager.aidl**
```
package com.ryg.chapter_2.aidl;
import com.ryg.chapter_2.aidl.Book;
interface IBookManager {
List<Book> getBookList();
void addBook(in Book book);
}
```
上面三个文件中,
* Book.java是一个表示图书信息的类,它实现了Parcelable接口。
* Book.aidl是Book类在AIDL中的声明。
* IBookManager.aidl是我们定义的一个接口,里面有两个方法:getBookList和addBook,其中getBookList用于从远程服务端获取图书列表,而addBook用于往图书列表中添加一本书,当然这两个方法主要是示例用,不一定要有实际意义。
我们可以看到,**尽管Book类已经和IBookManager位于相同的包中,但是在IBookManager中仍然要导入Book类,这就是AIDL的特殊之处**。
下面我们先看一下系统为IBookManager.aidl生产的Binder类,在gen目录下的com.ryg.chapter_2.aidl包中有一个IBookManager.java的类,这就是我们要找的类。接下来我们需要根据这个系统生成的Binder类来分析Binder的工作原理,代码如下:
**服务器端的代码**:
```
/**
*This file is auto-generated. DO NOT MODIFY.
*Original file: E:\\workspace\\Chapter_2\\src\\com\\ryg\\chapter_2\\aidl\\IBookManager.aidl
*/
package com.ryg.chapter_2.aidl;
public interface IBookManager extends android.os.IInterface {
/* Local-side IPC implementation stub class. */
public static abstract class Stub extends android.os.Binder implements com.ryg.chapter_2.aidl.IBookManager {
private static final java.lang.String DESCRIPTOR = "com.ryg.chapter_2.aidl.IBookManager";
/*Construct the stub at attach it to the interface. */
public Stub() {
this.attachInterface(this, DESCRIPTOR);
}
/*
* Cast an IBinder object into an com.ryg.chapter_2.aidl.IBookManager
* interface, generating a proxy if needed.
*/
public static com.ryg.chapter_2.aidl.IBookManager asInterface(android.os.IBinder obj) {
if ((obj == null)) {
return null;
}
android.os.IInterface iin = obj.queryLocalInterface(DESCRIPTOR);
if (((iin ! = null) && (iin instanceof com.ryg.chapter_2.aidl.
IBookManager))) {
return ((com.ryg.chapter_2.aidl.IBookManager) iin);
}
return new com.ryg.chapter_2.aidl.IBookManager.Stub.Proxy(obj);
}
@Override
public android.os.IBinder asBinder() {
return this;
}
@Override
public boolean onTransact(int code, android.os.Parcel data,android.os.Parcel reply, int flags)
throws android.os.Remote-Exception {
switch (code) {
case INTERFACE_TRANSACTION: {
reply.writeString(DESCRIPTOR);
return true;
}
case TRANSACTION_getBookList: {
data.enforceInterface(DESCRIPTOR);
java.util.List<com.ryg.chapter_2.aidl.Book> _result = this.
getBookList();
reply.writeNoException();
reply.writeTypedList(_result);
return true;
}
case TRANSACTION_addBook: {
data.enforceInterface(DESCRIPTOR);
com.ryg.chapter_2.aidl.Book _arg0;
if ((0 ! = data.readInt())) {
_arg0 = com.ryg.chapter_2.aidl.Book.CREATOR.create-
FromParcel(data);
} else {
_arg0 = null;
}
this.addBook(_arg0);
reply.writeNoException();
return true;
}
}
return super.onTransact(code, data, reply, flags);
}
private static class Proxy implements com.ryg.chapter_2.aidl.IBookManager {
private android.os.IBinder mRemote;
Proxy(android.os.IBinder remote) {
mRemote = remote;
}
@Override
public android.os.IBinder asBinder() {
return mRemote;
}
public java.lang.String getInterfaceDescriptor() {
return DESCRIPTOR;
}
@Override
public java.util.List<com.ryg.chapter_2.aidl.Book> getBookList()
throws android.os.RemoteException {
android.os.Parcel _data = android.os.Parcel.obtain();
android.os.Parcel _reply = android.os.Parcel.obtain();
java.util.List<com.ryg.chapter_2.aidl.Book> _result;
try {
_data.writeInterfaceToken(DESCRIPTOR);
mRemote.transact(Stub.TRANSACTION_getBookList, _data,_reply, 0);
_reply.readException();
_result = _reply
.createTypedArrayList(com.ryg.chapter_2.aidl.
Book.CREATOR);
} finally {
_reply.recycle();
_data.recycle();
}
return _result;
}
@Override
public void addBook(com.ryg.chapter_2.aidl.Book book)
throws android.os.RemoteException {
android.os.Parcel _data = android.os.Parcel.obtain();
android.os.Parcel _reply = android.os.Parcel.obtain();
try {
_data.writeInterfaceToken(DESCRIPTOR);
if ((book ! = null)) {
_data.writeInt(1);
book.writeToParcel(_data, 0);
} else {
_data.writeInt(0);
}
mRemote.transact(Stub.TRANSACTION_addBook, _data, _reply,0);
_reply.readException();
} finally {
_reply.recycle();
_data.recycle();
}
}
}
static final int TRANSACTION_getBookList = (android.os.IBinder.FIRST_CALL_TRANSACTION + 0);
static final int TRANSACTION_addBook = (android.os.IBinder.FIRST_CALL_TRANSACTION + 1);
}
public java.util.List<com.ryg.chapter_2.aidl.Book> getBookList()
throws android.os.RemoteException;
public void addBook(com.ryg.chapter_2.aidl.Book book)
throws android.os.RemoteException;
}
```
:-: ![](https://img.kancloud.cn/50/46/50466e29beae2ba7e510ef2913211f0b_829x703.png)
系统为IBookManager.aidl自动生成的gen目录下的IBookManager.java类的结构图
>[info]注意,上图其中的某些方法并不是该小章节的方法,而是整个第2章binder知识所命名的方法
上述代码是系统生成的,为了方便查看笔者稍微做了一下格式上的调整。
在gen目录下,可以看到根据IBookManager.aidl系统为我们生成了**IBookManager.java这个类,它继承了IInterface这个接口,同时它自己也还是个接口,所有可以在Binder中传输的接口都需要继承IInterface接口**。
这个类刚开始看起来逻辑混乱,但是实际上还是很清晰的,通过它我们可以清楚地了解到Binder的工作机制。
这个类的结构其实很简单,
* 首先,它声明了两个方法getBookList和addBook,显然这就是我们在IBookManager.aidl中所声明的方法,同时它还声明了两个整型的id(`TRANSACTION_getBookList
`和`TRANSACTION_addBook`)分别用于标识这两个方法,这两个id用于标识在transact过程中客户端所请求的到底是哪个方法。
* 接着,**它声明了一个内部类Stub,这个Stub就是一个Binder类,当客户端和服务端都位于同一个进程时,方法调用,不会走跨进程的transact过程,而当两者位于不同进程时,方法调用,需要走transact过程,这个逻辑由Stub的内部代理类Proxy来完成**。这么来看,IBookManager这个接口的确很简单,但是我们也应该认识到,这个**接口的核心实现就是它的内部类Stub和Stub的内部代理类Proxy**,
完整的代码(整个第2章的)如下图所示(idea编辑器自动生成的),
![](https://img.kancloud.cn/53/01/5301f20d4a21f0bdfb039464820449a2_720x396.png)
~~~
/*
* This file is auto-generated. DO NOT MODIFY.
* Original file: E:\\AndroidStudioProjects\\AndroidDevelopArtistic\\Chapter_2\\src\\main\\aidl
* \\com\\ryg\\chapter_2\\aidl\\IBookManager.aidl
*/
package com.ryg.chapter_2.aidl;
public interface IBookManager extends android.os.IInterface {
/**
* Local-side IPC implementation stub class.
*/
public static abstract class Stub extends android.os.Binder implements com.ryg.chapter_2.aidl.IBookManager {
private static final java.lang.String DESCRIPTOR = "com.ryg.chapter_2.aidl.IBookManager";
/**
* Construct the stub at attach it to the interface.
*/
public Stub() {
this.attachInterface(this, DESCRIPTOR);
}
/**
* Cast an IBinder object into an com.ryg.chapter_2.aidl.IBookManager interface,
* generating a proxy if needed.
*/
public static com.ryg.chapter_2.aidl.IBookManager asInterface(android.os.IBinder obj) {
if ((obj == null)) {
return null;
}
android.os.IInterface iin = obj.queryLocalInterface(DESCRIPTOR);
if (((iin != null) && (iin instanceof com.ryg.chapter_2.aidl.IBookManager))) {
return ((com.ryg.chapter_2.aidl.IBookManager) iin);
}
return new com.ryg.chapter_2.aidl.IBookManager.Stub.Proxy(obj);
}
@Override
public android.os.IBinder asBinder() {
return this;
}
@Override
public boolean onTransact(int code, android.os.Parcel data, android.os.Parcel reply,
int flags) throws android.os.RemoteException {
switch (code) {
case INTERFACE_TRANSACTION: {
reply.writeString(DESCRIPTOR);
return true;
}
case TRANSACTION_getBookList: {
data.enforceInterface(DESCRIPTOR);
java.util.List<com.ryg.chapter_2.aidl.Book> _result = this.getBookList();
reply.writeNoException();
reply.writeTypedList(_result);
return true;
}
case TRANSACTION_addBook: {
data.enforceInterface(DESCRIPTOR);
com.ryg.chapter_2.aidl.Book _arg0;
if ((0 != data.readInt())) {
_arg0 = com.ryg.chapter_2.aidl.Book.CREATOR.createFromParcel(data);
} else {
_arg0 = null;
}
this.addBook(_arg0);
reply.writeNoException();
return true;
}
case TRANSACTION_registerListener: {
data.enforceInterface(DESCRIPTOR);
com.ryg.chapter_2.aidl.IOnNewBookArrivedListener _arg0;
_arg0 = com.ryg.chapter_2.aidl.IOnNewBookArrivedListener.Stub.asInterface(data.readStrongBinder());
this.registerListener(_arg0);
reply.writeNoException();
return true;
}
case TRANSACTION_unregisterListener: {
data.enforceInterface(DESCRIPTOR);
com.ryg.chapter_2.aidl.IOnNewBookArrivedListener _arg0;
_arg0 = com.ryg.chapter_2.aidl.IOnNewBookArrivedListener.Stub.asInterface(data.readStrongBinder());
this.unregisterListener(_arg0);
reply.writeNoException();
return true;
}
}
return super.onTransact(code, data, reply, flags);
}
private static class Proxy implements com.ryg.chapter_2.aidl.IBookManager {
private android.os.IBinder mRemote;
Proxy(android.os.IBinder remote) {
mRemote = remote;
}
@Override
public android.os.IBinder asBinder() {
return mRemote;
}
public java.lang.String getInterfaceDescriptor() {
return DESCRIPTOR;
}
@Override
public java.util.List<com.ryg.chapter_2.aidl.Book> getBookList() throws android.os.RemoteException {
android.os.Parcel _data = android.os.Parcel.obtain();
android.os.Parcel _reply = android.os.Parcel.obtain();
java.util.List<com.ryg.chapter_2.aidl.Book> _result;
try {
_data.writeInterfaceToken(DESCRIPTOR);
mRemote.transact(Stub.TRANSACTION_getBookList, _data, _reply, 0);
_reply.readException();
_result = _reply.createTypedArrayList(com.ryg.chapter_2.aidl.Book.CREATOR);
} finally {
_reply.recycle();
_data.recycle();
}
return _result;
}
@Override
public void addBook(com.ryg.chapter_2.aidl.Book book) throws android.os.RemoteException {
android.os.Parcel _data = android.os.Parcel.obtain();
android.os.Parcel _reply = android.os.Parcel.obtain();
try {
_data.writeInterfaceToken(DESCRIPTOR);
if ((book != null)) {
_data.writeInt(1);
book.writeToParcel(_data, 0);
} else {
_data.writeInt(0);
}
mRemote.transact(Stub.TRANSACTION_addBook, _data, _reply, 0);
_reply.readException();
} finally {
_reply.recycle();
_data.recycle();
}
}
@Override
public void registerListener(com.ryg.chapter_2.aidl.IOnNewBookArrivedListener listener) throws android.os.RemoteException {
android.os.Parcel _data = android.os.Parcel.obtain();
android.os.Parcel _reply = android.os.Parcel.obtain();
try {
_data.writeInterfaceToken(DESCRIPTOR);
_data.writeStrongBinder((((listener != null)) ? (listener.asBinder()) : (null)));
mRemote.transact(Stub.TRANSACTION_registerListener, _data, _reply, 0);
_reply.readException();
} finally {
_reply.recycle();
_data.recycle();
}
}
@Override
public void unregisterListener(com.ryg.chapter_2.aidl.IOnNewBookArrivedListener listener) throws android.os.RemoteException {
android.os.Parcel _data = android.os.Parcel.obtain();
android.os.Parcel _reply = android.os.Parcel.obtain();
try {
_data.writeInterfaceToken(DESCRIPTOR);
_data.writeStrongBinder((((listener != null)) ? (listener.asBinder()) : (null)));
mRemote.transact(Stub.TRANSACTION_unregisterListener, _data, _reply, 0);
_reply.readException();
} finally {
_reply.recycle();
_data.recycle();
}
}
}
static final int TRANSACTION_getBookList = (android.os.IBinder.FIRST_CALL_TRANSACTION + 0);
static final int TRANSACTION_addBook = (android.os.IBinder.FIRST_CALL_TRANSACTION + 1);
static final int TRANSACTION_registerListener = (android.os.IBinder.FIRST_CALL_TRANSACTION + 2);
static final int TRANSACTION_unregisterListener = (android.os.IBinder.FIRST_CALL_TRANSACTION + 3);
}
public java.util.List<com.ryg.chapter_2.aidl.Book> getBookList() throws android.os.RemoteException;
public void addBook(com.ryg.chapter_2.aidl.Book book) throws android.os.RemoteException;
public void registerListener(com.ryg.chapter_2.aidl.IOnNewBookArrivedListener listener) throws android.os.RemoteException;
public void unregisterListener(com.ryg.chapter_2.aidl.IOnNewBookArrivedListener listener) throws android.os.RemoteException;
}
~~~
:-: ![](https://img.kancloud.cn/50/46/50466e29beae2ba7e510ef2913211f0b_829x703.png)
系统为IBookManager.aidl自动生成的gen目录下的IBookManager.java类的结构图
下面详细介绍针对这两个类的每个方法的含义。
* **DESCRIPTOR**
**Binder的唯一标识,一般用当前Binder的类名表示**,比如本例中的“com.ryg. chapter_2.aidl.IBookManager”。
* **asInterface(android.os.IBinder obj)**
**用于将服务端的Binder对象转换成客户端所需的AIDL接口类型的对象,这种转换过程是区分进程的,如果客户端和服务端位于同一进程,那么此方法返回的就是服务端的Stub对象本身,否则返回的是系统封装后的Stub.proxy对象**。
* **asBinder**
此方法用于返回当前Binder对象。
* **onTransact**
* **这个方法运行在服务端中的Binder线程池中**,执行过程:**当客户端发起跨进程请求时,远程请求会通过系统底层封装后交由此方法来处理。该方法的原型为public Boolean onTransact (int code, android.os.Parcel data, android.os.Parcel reply, int flags)。服务端通过code可以确定客户端所请求的目标方法是什么,接着从data中取出目标方法所需的参数(如果目标方法有参数的话),然后执行目标方法。当目标方法执行完毕后,就向reply中写入返回值(如果目标方法有返回值的话), onTransact方法的执行过程就是这样的**。
需要注意的是,**如果此方法返回false,那么客户端的请求会失败,因此我们可以利用这个特性来做权限验证,毕竟我们也不希望随便一个进程都能远程调用我们的服务**。
* **Proxy#getBookList**
~~~
@Override
public java.util.List<com.ryg.chapter_2.aidl.Book> getBookList() throws android.os.RemoteException {
android.os.Parcel _data = android.os.Parcel.obtain();
android.os.Parcel _reply = android.os.Parcel.obtain();
java.util.List<com.ryg.chapter_2.aidl.Book> _result;
try {
_data.writeInterfaceToken(DESCRIPTOR);
mRemote.transact(Stub.TRANSACTION_getBookList, _data, _reply, 0);
_reply.readException();
_result = _reply.createTypedArrayList(com.ryg.chapter_2.aidl.Book.CREATOR);
} finally {
_reply.recycle();
_data.recycle();
}
return _result;
}
~~~
这个方法**运行在客户端**,当客户端远程调用此方法时,它的内部实现是这样的:首先创建该方法所需要的输入型Parcel对象_data、输出型Parcel对象_reply和返回值对象List;然后把该方法的参数信息写入_data中(如果有参数的话);接着调用transact方法来发起**RPC(远程过程调用**)请求,同时当前线程挂起;然后服务端的onTransact方法会被调用,直到RPC过程返回后,当前线程继续执行,并从_reply中取出RPC过程的返回结果;最后返回_reply中的数据。
* **Proxy#addBook**
这个方法**运行在客户端**,它的执行过程和getBookList是一样的,addBook没有返回值,所以它不需要从_reply中取出返回值。
通过上面的分析,读者应该已经了解了Binder的工作机制,但是有两点还是需要额外说明一下:
1. 首先,当客户端发起远程请求时,由于当前线程会被挂起直至服务端进程返回数据,所以如果一个远程方法是很耗时的,那么**不能在UI线程中发起此远程请求**;
2. 其次,由于服务端的Binder方法运行在Binder的线程池中,所以**Binder方法不管是否耗时都应该采用同步的方式去实现,因为它已经运行在一个线程中了**。
为了更好地说明Binder,下面给出一个Binder的工作机制图,如图2-5所示。从下图来看,**binder更像是一个数据通道**。
:-: ![](https://img.kancloud.cn/d4/e7/d4e7489a2008bd926464351c901dd451_1361x513.png)
图2-5 Binder的工作机制
从上述分析过程来看,我们**完全可以不提供AIDL文件即可实现Binder,之所以提供AIDL文件,是为了方便系统为我们生成代码**。
系统根据AIDL文件生成Java文件的格式是固定的,我们可以抛开AIDL文件直接写一个Binder出来,接下来我们就介绍**如何手动写一个Binder**。还是上面的例子,但是这次我们不提供AIDL文件。参考上面系统自动生成的IBookManager.java这个类的代码,可以发现这个类是相当有规律的,根据它的特点,我们完全可以自己写一个和它一模一样的类出来,然后这个不借助AIDL文件的Binder就完成了。但是我们发现系统生成的类看起来结构不清晰,我们想试着对它进行结构上的调整,**可以发现这个类主要由两部分组成,首先它本身是一个Binder的接口(继承了IInterface),其次它的内部有个Stub类,这个类就是个Binder**。还记得我们怎么写一个Binder的服务端吗?代码如下所示。
private final IBookManager.Stub mBinder = new IBookManager.Stub() {
@Override
public List<Book> getBookList() throws RemoteException {
synchronized (mBookList) {
return mBookList;
}
}
@Override
public void addBook(Book book) throws RemoteException {
synchronized (mBookList) {
if (! mBookList.contains(book)) {
mBookList.add(book);
}
}
}
}
**首先我们会实现一个创建了一个Stub对象并在内部实现IBookManager的接口方法,然后在Service的onBind中返回这个Stub对象。因此,从这一点来看,我们完全可以把Stub类提取出来直接作为一个独立的Binder类来实现,这样IBookManager中就只剩接口本身了,通过这种分离的方式可以让它的结构变得清晰点**。
根据上面的思想,**手动实现一个Binder可以通过如下步骤来完成**:
(1)声明一个AIDL性质的接口,只需要继承IInterface接口即可,IInterface接口中只有一个asBinder方法。这个接口的实现如下:
public interface IBookManager extends IInterface {
static final String DESCRIPTOR = "com.ryg.chapter_2.manualbinder.IBookManager";
static final int TRANSACTION_getBookList = IBinder.FIRST_CALL_TRANSA-CTION + 0;
static final int TRANSACTION_addBook = IBinder.FIRST_CALL_TRANSACTION+ 1;
public List<Book> getBookList() throws RemoteException;
public void addBook(Book book) throws RemoteException;
}
可以看到,**在接口中声明了一个Binder描述符和另外两个id,这两个id分别表示的是getBookList和addBook方法**,这段代码原本也是系统生成的,我们仿照系统生成的规则去手动书写这部分代码。如果我们有三个方法,应该怎么做呢?很显然,我们要再声明一个id,然后按照固定模式声明这个新方法即可,这个比较好理解,不再多说。
(2)实现Stub类和Stub类中的Proxy代理类,这段代码我们可以自己写,但是写出来后会发现和系统自动生成的代码是一样的,因此这个Stub类我们只需要参考系统生成的代码即可,只是结构上需要做一下调整,调整后的代码如下所示。
[BookManagerImpl.java](https://github.com/singwhatiwanna/android-art-res/blob/master/Chapter_2/src/com/ryg/chapter_2/manualbinder/BookManagerImpl.java)
```
package com.ryg.chapter_2.manualbinder;
import java.util.List;
import android.os.Binder;
import android.os.IBinder;
import android.os.Parcel;
import android.os.RemoteException;
public class BookManagerImpl extends Binder implements IBookManager {
/** Construct the stub at attach it to the interface. */
public BookManagerImpl() {
this.attachInterface(this, DESCRIPTOR);
}
/**
* Cast an IBinder object into an IBookManager interface, generating a proxy
* if needed.
*/
public static IBookManager asInterface(IBinder obj) {
if ((obj == null)) {
return null;
}
android.os.IInterface iin = obj.queryLocalInterface(DESCRIPTOR);
if (((iin != null) && (iin instanceof IBookManager))) {
return ((IBookManager) iin);
}
return new BookManagerImpl.Proxy(obj);
}
@Override
public IBinder asBinder() {
return this;
}
@Override
public boolean onTransact(int code, Parcel data, Parcel reply, int flags)
throws RemoteException {
switch (code) {
case INTERFACE_TRANSACTION: {
reply.writeString(DESCRIPTOR);
return true;
}
case TRANSACTION_getBookList: {
data.enforceInterface(DESCRIPTOR);
List<Book> result = this.getBookList();
reply.writeNoException();
reply.writeTypedList(result);
return true;
}
case TRANSACTION_addBook: {
data.enforceInterface(DESCRIPTOR);
Book arg0;
if ((0 != data.readInt())) {
arg0 = Book.CREATOR.createFromParcel(data);
} else {
arg0 = null;
}
this.addBook(arg0);
reply.writeNoException();
return true;
}
}
return super.onTransact(code, data, reply, flags);
}
@Override
public List<Book> getBookList() throws RemoteException {
// TODO 待实现
return null;
}
@Override
public void addBook(Book book) throws RemoteException {
// TODO 待实现
}
private static class Proxy implements IBookManager {
private IBinder mRemote;
Proxy(IBinder remote) {
mRemote = remote;
}
@Override
public IBinder asBinder() {
return mRemote;
}
public java.lang.String getInterfaceDescriptor() {
return DESCRIPTOR;
}
@Override
public List<Book> getBookList() throws RemoteException {
Parcel data = Parcel.obtain();
Parcel reply = Parcel.obtain();
List<Book> result;
try {
data.writeInterfaceToken(DESCRIPTOR);
mRemote.transact(TRANSACTION_getBookList, data, reply, 0);
reply.readException();
result = reply.createTypedArrayList(Book.CREATOR);
} finally {
reply.recycle();
data.recycle();
}
return result;
}
@Override
public void addBook(Book book) throws RemoteException {
Parcel data = Parcel.obtain();
Parcel reply = Parcel.obtain();
try {
data.writeInterfaceToken(DESCRIPTOR);
if ((book != null)) {
data.writeInt(1);
book.writeToParcel(data, 0);
} else {
data.writeInt(0);
}
mRemote.transact(TRANSACTION_addBook, data, reply, 0);
reply.readException();
} finally {
reply.recycle();
data.recycle();
}
}
}
}
```
通过将上述代码和系统生成的代码对比,可以发现简直是一模一样的。也许有人会问:**既然和系统生成的一模一样,那我们为什么要手动去写呢**?我们**在实际开发中完全可以通过AIDL文件让系统去自动生成,手动去写的意义在于可以让我们更加理解Binder的工作原理,同时也提供了一种不通过AIDL文件来实现Binder的新方式**。也就是说,**AIDL文件并不是实现Binder的必需品。如果是我们手写的Binder,那么在服务端只需要创建一个BookManagerImpl的对象并在Service的onBind方法中返回即可。最后,是否手动实现Binder没有本质区别,二者的工作原理完全一样,AIDL文件的本质是系统为我们提供了一种快速实现Binder的工具,仅此而已**。
接下来,我们介绍Binder的两个很重要的方法**linkToDeath和unlinkToDeath**。我们知道,**Binder运行在服务端进程,如果服务端进程由于某种原因异常终止,这个时候我们到服务端的Binder连接断裂(称之为Binder死亡),会导致我们的远程调用失败。更为关键的是,如果我们不知道Binder连接已经断裂,那么客户端的功能就会受到影响**。
**为了解决这个问题,Binder中提供了两个配对的方法linkToDeath和unlinkToDeath,通过linkToDeath我们可以给Binder设置一个死亡代理,当Binder死亡时,我们就会收到通知,这个时候我们就可以重新发起连接请求从而恢复连接**。那么到底如何给Binder设置死亡代理呢?也很简单。
* 首先,**声明一个DeathRecipient对象。DeathRecipient是一个接口,其内部只有一个方法binderDied,我们需要实现这个方法,当Binder死亡的时候,系统就会回调binderDied方法,然后我们就可以移出之前绑定的binder代理并重新绑定远程服务**:
private IBinder.DeathRecipient mDeathRecipient = new IBinder.Death-
Recipient() {
@Override
public void binderDied() {
if (mBookManager == null)
return;
mBookManager.asBinder().unlinkToDeath(mDeathRecipient, 0);
mBookManager = null;
// TODO:这里重新绑定远程Service
}
};
* 其次,**在客户端绑定远程服务成功后,给binder设置死亡代理**:
```
mService = IMessageBoxManager.Stub.asInterface(binder);
binder.linkToDeath(mDeathRecipient, 0);
```
其中linkToDeath的第二个参数是个标记位,我们直接设为0即可。
**经过上面两个步骤,就给我们的Binder设置了死亡代理,当Binder死亡的时候我们就可以收到通知了。另外,通过Binder的方法isBinderAlive也可以判断Binder是否死亡**。
到这里,IPC的基础知识就介绍完毕了,下面开始进入正题,直面形形色色的进程间通信方式。
- 前言
- 第1章 Activity的生命周期和启动模式
- 1.1 Activity的生命周期全面分析
- 1.1.1 典型情况下的生命周期分析
- 1.1.2 异常情况下的生命周期分析
- 1.2 Activity的启动模式
- 1.2.1 Activity的LaunchMode
- 1.2.2 Activity的Flags
- 1.3 IntentFilter的匹配规则
- 第2章 IPC机制
- 2.1 Android IPC简介
- 2.2 Android中的多进程模式
- 2.2.1 开启多进程模式
- 2.2.2 多进程模式的运行机制
- 2.3 IPC基础概念介绍
- 2.3.1 Serializable接口
- 2.3.2 Parcelable接口
- 2.3.3 Binder
- 2.4 Android中的IPC方式
- 2.4.1 使用Bundle
- 2.4.2 使用文件共享
- 2.4.3 使用Messenger
- 2.4.4 使用AIDL
- 2.4.5 使用ContentProvider
- 2.4.6 使用Socket
- 2.5 Binder连接池
- 2.6 选用合适的IPC方式
- 第3章 View的事件体系
- 3.1 View基础知识
- 3.1.1 什么是View
- 3.1.2 View的位置参数
- 3.1.3 MotionEvent和TouchSlop
- 3.1.4 VelocityTracker、GestureDetector和Scroller
- 3.2 View的滑动
- 3.2.1 使用scrollTo/scrollBy
- 3.2.2 使用动画
- 3.2.3 改变布局参数
- 3.2.4 各种滑动方式的对比
- 3.3 弹性滑动
- 3.3.1 使用Scroller7
- 3.3.2 通过动画
- 3.3.3 使用延时策略
- 3.4 View的事件分发机制
- 3.4.1 点击事件的传递规则
- 3.4.2 事件分发的源码解析
- 3.5 View的滑动冲突
- 3.5.1 常见的滑动冲突场景
- 3.5.2 滑动冲突的处理规则
- 3.5.3 滑动冲突的解决方式
- 第4章 View的工作原理
- 4.1 初识ViewRoot和DecorView
- 4.2 理解MeasureSpec
- 4.2.1 MeasureSpec
- 4.2.2 MeasureSpec和LayoutParams的对应关系
- 4.3 View的工作流程
- 4.3.1 measure过程
- 4.3.2 layout过程
- 4.3.3 draw过程
- 4.4 自定义View
- 4.4.1 自定义View的分类
- 4.4.2 自定义View须知
- 4.4.3 自定义View示例
- 4.4.4 自定义View的思想
- 第5章 理解RemoteViews
- 5.1 RemoteViews的应用
- 5.1.1 RemoteViews在通知栏上的应用
- 5.1.2 RemoteViews在桌面小部件上的应用
- 5.1.3 PendingIntent概述
- 5.2 RemoteViews的内部机制
- 5.3 RemoteViews的意义
- 第6章 Android的Drawable
- 6.1 Drawable简介
- 6.2 Drawable的分类
- 6.2.1 BitmapDrawable2
- 6.2.2 ShapeDrawable
- 6.2.3 LayerDrawable
- 6.2.4 StateListDrawable
- 6.2.5 LevelListDrawable
- 6.2.6 TransitionDrawable
- 6.2.7 InsetDrawable
- 6.2.8 ScaleDrawable
- 6.2.9 ClipDrawable
- 6.3 自定义Drawable
- 第7章 Android动画深入分析
- 7.1 View动画
- 7.1.1 View动画的种类
- 7.1.2 自定义View动画
- 7.1.3 帧动画
- 7.2 View动画的特殊使用场景
- 7.2.1 LayoutAnimation
- 7.2.2 Activity的切换效果
- 7.3 属性动画
- 7.3.1 使用属性动画
- 7.3.2 理解插值器和估值器 /
- 7.3.3 属性动画的监听器
- 7.3.4 对任意属性做动画
- 7.3.5 属性动画的工作原理
- 7.4 使用动画的注意事项
- 第8章 理解Window和WindowManager
- 8.1 Window和WindowManager
- 8.2 Window的内部机制
- 8.2.1 Window的添加过程
- 8.2.2 Window的删除过程
- 8.2.3 Window的更新过程
- 8.3 Window的创建过程
- 8.3.1 Activity的Window创建过程
- 8.3.2 Dialog的Window创建过程
- 8.3.3 Toast的Window创建过程
- 第9章 四大组件的工作过程
- 9.1 四大组件的运行状态
- 9.2 Activity的工作过程
- 9.3 Service的工作过程
- 9.3.1 Service的启动过程
- 9.3.2 Service的绑定过程
- 9.4 BroadcastReceiver的工作过程
- 9.4.1 广播的注册过程
- 9.4.2 广播的发送和接收过程
- 9.5 ContentProvider的工作过程
- 第10章 Android的消息机制
- 10.1 Android的消息机制概述
- 10.2 Android的消息机制分析
- 10.2.1 ThreadLocal的工作原理
- 10.2.2 消息队列的工作原理
- 10.2.3 Looper的工作原理
- 10.2.4 Handler的工作原理
- 10.3 主线程的消息循环
- 第11章 Android的线程和线程池
- 11.1 主线程和子线程
- 11.2 Android中的线程形态
- 11.2.1 AsyncTask
- 11.2.2 AsyncTask的工作原理
- 11.2.3 HandlerThread
- 11.2.4 IntentService
- 11.3 Android中的线程池
- 11.3.1 ThreadPoolExecutor
- 11.3.2 线程池的分类
- 第12章 Bitmap的加载和Cache
- 12.1 Bitmap的高效加载
- 12.2 Android中的缓存策略
- 12.2.1 LruCache
- 12.2.2 DiskLruCache
- 12.2.3 ImageLoader的实现446
- 12.3 ImageLoader的使用
- 12.3.1 照片墙效果
- 12.3.2 优化列表的卡顿现象
- 第13章 综合技术
- 13.1 使用CrashHandler来获取应用的crash信息
- 13.2 使用multidex来解决方法数越界
- 13.3 Android的动态加载技术
- 13.4 反编译初步
- 13.4.1 使用dex2jar和jd-gui反编译apk
- 13.4.2 使用apktool对apk进行二次打包
- 第14章 JNI和NDK编程
- 14.1 JNI的开发流程
- 14.2 NDK的开发流程
- 14.3 JNI的数据类型和类型签名
- 14.4 JNI调用Java方法的流程
- 第15章 Android性能优化
- 15.1 Android的性能优化方法
- 15.1.1 布局优化
- 15.1.2 绘制优化
- 15.1.3 内存泄露优化
- 15.1.4 响应速度优化和ANR日志分析
- 15.1.5 ListView和Bitmap优化
- 15.1.6 线程优化
- 15.1.7 一些性能优化建议
- 15.2 内存泄露分析之MAT工具
- 15.3 提高程序的可维护性