#### 5.1.3 PendingIntent概述
在5.1.2节中,我们多次提到PendingIntent,那么PendingIntent到底是什么东西呢?它和Intent的区别是什么呢?在本节中将介绍PendingIntent的使用方法。
顾名思义,PendingIntent表示一种处于pending状态的意图,而pending状态表示的是一种待定、等待、即将发生的意思,就是说接下来有一个Intent(即意图)将在某个待定的时刻发生。可以看出PendingIntent和Intent的区别在于,PendingIntent是在将来的某个不确定的时刻发生,而Intent是立刻发生。PendingIntent典型的使用场景是给RemoteViews添加单击事件,因为RemoteViews运行在远程进程中,因此RemoteViews不同于普通的View,所以无法直接向View那样通过setOnClickListener方法来设置单击事件。要想给RemoteViews设置单击事件,就必须使用PendingIntent, PendingIntent通过send和cancel方法来发送和取消特定的待定Intent。
PendingIntent支持三种待定意图:启动Activity、启动Service和发送广播,对应着它的三个接口方法,如表5-1所示。
表5-1 PendingIntent的主要方法
![](https://img.kancloud.cn/1e/6e/1e6ec609ece0649a29b5da5c6c660b66_1354x477.png)
如表5-1所示,getActivity、getService和getBroadcast这三个方法的参数意义都是相同的,第一个和第三个参数比较好理解,这里主要说下第二个参数requestCode和第四个参数flags,其中requestCode表示PendingIntent发送方的请求码,多数情况下设为0即可,另外requestCode会影响到flags的效果。flags常见的类型有:FLAG_ONE_SHOT、FLAG_NO_CREATE、FLAG_CANCEL_CURRENT和FLAG_UPDATE_CURRENT。在说明这四个标记位之前,必须要明白一个概念,那就是PendingIntent的匹配规则,即在什么情况下两个PendingIntent是相同的。
PendingIntent的匹配规则为:如果两个PendingIntent它们内部的Intent相同并且requestCode也相同,那么这两个PendingIntent就是相同的。requestCode相同比较好理解,那么什么情况下Intent相同呢?Intent的匹配规则是:如果两个Intent的ComponentName和intent-filter都相同,那么这两个Intent就是相同的。需要注意的是Extras不参与Intent的匹配过程,只要Intent之间的ComponentName和intent-filter相同,即使它们的Extras不同,那么这两个Intent也是相同的。了解了PendingIntent的匹配规则后,就可以进一步理解flags参数的含义了,如下所示。
* FLAG_ONE_SHOT
当前描述的PendingIntent只能被使用一次,然后它就会被自动cancel,如果后续还有相同的PendingIntent,那么它们的send方法就会调用失败。对于通知栏消息来说,如果采用此标记位,那么同类的通知只能使用一次,后续的通知单击后将无法打开。
* FLAG_NO_CREATE
当前描述的PendingIntent不会主动创建,如果当前PendingIntent之前不存在,那么getActivity、getService和getBroadcast方法会直接返回null,即获取PendingIntent失败。这个标记位很少见,它无法单独使用,因此在日常开发中它并没有太多的使用意义,这里就不再过多介绍了。
* FLAG_CANCEL_CURRENT
当前描述的PendingIntent如果已经存在,那么它们都会被cancel,然后系统会创建一个新的PendingIntent。对于通知栏消息来说,那些被cancel的消息单击后将无法打开。
* FLAG_UPDATE_CURRENT
当前描述的PendingIntent如果已经存在,那么它们都会被更新,即它们的Intent中的Extras会被替换成最新的。
从上面的分析来看还是不太好理解这四个标记位,下面结合通知栏消息再描述一遍。这里分两种情况,如下代码中:manager.notify(1, notification),如果notify的第一个参数id是常量,那么多次调用notify只能弹出一个通知,后续的通知会把前面的通知完全替代掉,而如果每次id都不同,那么多次调用notify会弹出多个通知,下面一一说明。
如果notify方法的id是常量,那么不管PendingIntent是否匹配,后面的通知会直接替换前面的通知,这个很好理解。
如果notify方法的id每次都不同,那么当PendingIntent不匹配时,这里的匹配是指PendingIntent中的Intent相同并且requestCode相同,在这种情况下不管采用何种标记位,这些通知之间不会相互干扰。如果PendingIntent处于匹配状态时,这个时候要分情况讨论:如果采用了FLAG_ONE_SHOT标记位,那么后续通知中的PendingIntent会和第一条通知保持完全一致,包括其中的Extras,单击任何一条通知后,剩下的通知均无法再打开,当所有的通知都被清除后,会再次重复这个过程;如果采用FLAG_CANCEL_CURRENT标记位,那么只有最新的通知可以打开,之前弹出的所有通知均无法打开;如果采用FLAG_UPDATE_CURRENT标记位,那么之前弹出的通知中的PendingIntent会被更新,最终它们和最新的一条通知保持完全一致,包括其中的Extras,并且这些通知都是可以打开的。
- 前言
- 第1章 Activity的生命周期和启动模式
- 1.1 Activity的生命周期全面分析
- 1.1.1 典型情况下的生命周期分析
- 1.1.2 异常情况下的生命周期分析
- 1.2 Activity的启动模式
- 1.2.1 Activity的LaunchMode
- 1.2.2 Activity的Flags
- 1.3 IntentFilter的匹配规则
- 第2章 IPC机制
- 2.1 Android IPC简介
- 2.2 Android中的多进程模式
- 2.2.1 开启多进程模式
- 2.2.2 多进程模式的运行机制
- 2.3 IPC基础概念介绍
- 2.3.1 Serializable接口
- 2.3.2 Parcelable接口
- 2.3.3 Binder
- 2.4 Android中的IPC方式
- 2.4.1 使用Bundle
- 2.4.2 使用文件共享
- 2.4.3 使用Messenger
- 2.4.4 使用AIDL
- 2.4.5 使用ContentProvider
- 2.4.6 使用Socket
- 2.5 Binder连接池
- 2.6 选用合适的IPC方式
- 第3章 View的事件体系
- 3.1 View基础知识
- 3.1.1 什么是View
- 3.1.2 View的位置参数
- 3.1.3 MotionEvent和TouchSlop
- 3.1.4 VelocityTracker、GestureDetector和Scroller
- 3.2 View的滑动
- 3.2.1 使用scrollTo/scrollBy
- 3.2.2 使用动画
- 3.2.3 改变布局参数
- 3.2.4 各种滑动方式的对比
- 3.3 弹性滑动
- 3.3.1 使用Scroller7
- 3.3.2 通过动画
- 3.3.3 使用延时策略
- 3.4 View的事件分发机制
- 3.4.1 点击事件的传递规则
- 3.4.2 事件分发的源码解析
- 3.5 View的滑动冲突
- 3.5.1 常见的滑动冲突场景
- 3.5.2 滑动冲突的处理规则
- 3.5.3 滑动冲突的解决方式
- 第4章 View的工作原理
- 4.1 初识ViewRoot和DecorView
- 4.2 理解MeasureSpec
- 4.2.1 MeasureSpec
- 4.2.2 MeasureSpec和LayoutParams的对应关系
- 4.3 View的工作流程
- 4.3.1 measure过程
- 4.3.2 layout过程
- 4.3.3 draw过程
- 4.4 自定义View
- 4.4.1 自定义View的分类
- 4.4.2 自定义View须知
- 4.4.3 自定义View示例
- 4.4.4 自定义View的思想
- 第5章 理解RemoteViews
- 5.1 RemoteViews的应用
- 5.1.1 RemoteViews在通知栏上的应用
- 5.1.2 RemoteViews在桌面小部件上的应用
- 5.1.3 PendingIntent概述
- 5.2 RemoteViews的内部机制
- 5.3 RemoteViews的意义
- 第6章 Android的Drawable
- 6.1 Drawable简介
- 6.2 Drawable的分类
- 6.2.1 BitmapDrawable2
- 6.2.2 ShapeDrawable
- 6.2.3 LayerDrawable
- 6.2.4 StateListDrawable
- 6.2.5 LevelListDrawable
- 6.2.6 TransitionDrawable
- 6.2.7 InsetDrawable
- 6.2.8 ScaleDrawable
- 6.2.9 ClipDrawable
- 6.3 自定义Drawable
- 第7章 Android动画深入分析
- 7.1 View动画
- 7.1.1 View动画的种类
- 7.1.2 自定义View动画
- 7.1.3 帧动画
- 7.2 View动画的特殊使用场景
- 7.2.1 LayoutAnimation
- 7.2.2 Activity的切换效果
- 7.3 属性动画
- 7.3.1 使用属性动画
- 7.3.2 理解插值器和估值器 /
- 7.3.3 属性动画的监听器
- 7.3.4 对任意属性做动画
- 7.3.5 属性动画的工作原理
- 7.4 使用动画的注意事项
- 第8章 理解Window和WindowManager
- 8.1 Window和WindowManager
- 8.2 Window的内部机制
- 8.2.1 Window的添加过程
- 8.2.2 Window的删除过程
- 8.2.3 Window的更新过程
- 8.3 Window的创建过程
- 8.3.1 Activity的Window创建过程
- 8.3.2 Dialog的Window创建过程
- 8.3.3 Toast的Window创建过程
- 第9章 四大组件的工作过程
- 9.1 四大组件的运行状态
- 9.2 Activity的工作过程
- 9.3 Service的工作过程
- 9.3.1 Service的启动过程
- 9.3.2 Service的绑定过程
- 9.4 BroadcastReceiver的工作过程
- 9.4.1 广播的注册过程
- 9.4.2 广播的发送和接收过程
- 9.5 ContentProvider的工作过程
- 第10章 Android的消息机制
- 10.1 Android的消息机制概述
- 10.2 Android的消息机制分析
- 10.2.1 ThreadLocal的工作原理
- 10.2.2 消息队列的工作原理
- 10.2.3 Looper的工作原理
- 10.2.4 Handler的工作原理
- 10.3 主线程的消息循环
- 第11章 Android的线程和线程池
- 11.1 主线程和子线程
- 11.2 Android中的线程形态
- 11.2.1 AsyncTask
- 11.2.2 AsyncTask的工作原理
- 11.2.3 HandlerThread
- 11.2.4 IntentService
- 11.3 Android中的线程池
- 11.3.1 ThreadPoolExecutor
- 11.3.2 线程池的分类
- 第12章 Bitmap的加载和Cache
- 12.1 Bitmap的高效加载
- 12.2 Android中的缓存策略
- 12.2.1 LruCache
- 12.2.2 DiskLruCache
- 12.2.3 ImageLoader的实现446
- 12.3 ImageLoader的使用
- 12.3.1 照片墙效果
- 12.3.2 优化列表的卡顿现象
- 第13章 综合技术
- 13.1 使用CrashHandler来获取应用的crash信息
- 13.2 使用multidex来解决方法数越界
- 13.3 Android的动态加载技术
- 13.4 反编译初步
- 13.4.1 使用dex2jar和jd-gui反编译apk
- 13.4.2 使用apktool对apk进行二次打包
- 第14章 JNI和NDK编程
- 14.1 JNI的开发流程
- 14.2 NDK的开发流程
- 14.3 JNI的数据类型和类型签名
- 14.4 JNI调用Java方法的流程
- 第15章 Android性能优化
- 15.1 Android的性能优化方法
- 15.1.1 布局优化
- 15.1.2 绘制优化
- 15.1.3 内存泄露优化
- 15.1.4 响应速度优化和ANR日志分析
- 15.1.5 ListView和Bitmap优化
- 15.1.6 线程优化
- 15.1.7 一些性能优化建议
- 15.2 内存泄露分析之MAT工具
- 15.3 提高程序的可维护性