#### 4.3.1 measure过程
measure过程要分情况来看,如果只是一个原始的View,那么通过measure方法就完成了其测量过程,如果是一个ViewGroup,除了完成自己的测量过程外,还会遍历去调用所有子元素的measure方法,各个子元素再递归去执行这个流程,下面针对这两种情况分别讨论。
**1.View的measure过程**
View的measure过程由其measure方法来完成,measure方法是一个final类型的方法,这意味着子类不能重写此方法,在View的measure方法中会去调用View的onMeasure方法,因此只需要看onMeasure的实现即可,View的onMeasure方法如下所示。
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(),
widthMeasureSpec), getDefaultSize(getSuggestedMinimumHeight(),
heightMeasureSpec));
}
上述代码很简洁,但是简洁并不代表简单,setMeasuredDimension方法会设置View宽/高的测量值,因此我们只需要看getDefaultSize这个方法即可:
public static int getDefaultSize(int size, int measureSpec) {
int result = size;
int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);
switch (specMode) {
case MeasureSpec.UNSPECIFIED:
result = size;
break;
case MeasureSpec.AT_MOST:
case MeasureSpec.EXACTLY:
result = specSize;
break;
}
return result;
}
可以看出,getDefaultSize这个方法的逻辑很简单,对于我们来说,我们只需要看AT_MOST和.EXACTLY这两种情况。简单地理解,其实getDefaultSize返回的大小就是measureSpec中的specSize,而这个specSize就是View测量后的大小,这里多次提到测量后的大小,是因为View最终的大小是在layout阶段确定的,所以这里必须要加以区分,但是几乎所有情况下View的测量大小和最终大小是相等的。
至于UNSPECIFIED这种情况,一般用于系统内部的测量过程,在这种情况下,View的大小为getDefaultSize的第一个参数size,即宽/高分别为getSuggestedMinimumWidth和getSuggestedMinimumHeight这两个方法的返回值,看一下它们的源码:
protected int getSuggestedMinimumWidth() {
return (mBackground == null) ? mMinWidth : max(mMinWidth, mBackground.
getMinimumWidth());
}
protected int getSuggestedMinimumHeight() {
return (mBackground == null) ? mMinHeight : max(mMinHeight, mBackground.
getMinimumHeight());
}
这里只分析getSuggestedMinimumWidth方法的实现,getSuggestedMinimumHeight和它的实现原理是一样的。从getSuggestedMinimumWidth的代码可以看出,如果View没有设置背景,那么View的宽度为mMinWidth,而mMinWidth对应于android:minWidth这个属性所指定的值,因此View的宽度即为android:minWidth属性所指定的值。这个属性如果不指定,那么mMinWidth则默认为0;如果View指定了背景,则View的宽度为max(mMinWidth, mBackground.getMinimumWidth())。mMinWidth的含义我们已经知道了,那么mBackground. getMinimumWidth()是什么呢?我们看一下Drawable的getMinimumWidth方法,如下所示。
public int getMinimumWidth() {
final int intrinsicWidth = getIntrinsicWidth();
return intrinsicWidth > 0 ? intrinsicWidth : 0;
}
可以看出,getMinimumWidth返回的就是Drawable的原始宽度,前提是这个Drawable有原始宽度,否则就返回0。那么Drawable在什么情况下有原始宽度呢?这里先举个例子说明一下,ShapeDrawable无原始宽/高,而BitmapDrawable有原始宽/高(图片的尺寸),详细内容会在第6章进行介绍。
这里再总结一下getSuggestedMinimumWidth的逻辑:如果View没有设置背景,那么返回android:minWidth这个属性所指定的值,这个值可以为0;如果View设置了背景,则返回android:minWidth和背景的最小宽度这两者中的最大值,getSuggestedMinimumWidth和getSuggestedMinimumHeight的返回值就是View在UNSPECIFIED情况下的测量宽/高。
从getDefaultSize方法的实现来看,View的宽/高由specSize决定,所以我们可以得出如下结论:直接继承View的自定义控件需要重写onMeasure方法并设置wrap_content时的自身大小,否则在布局中使用wrap_content就相当于使用match_parent。为什么呢?这个原因需要结合上述代码和表4-1才能更好地理解。从上述代码中我们知道,如果View在布局中使用wrap_content,那么它的specMode是AT_MOST模式,在这种模式下,它的宽/高等于specSize;查表4-1可知,这种情况下View的specSize是parentSize,而parentSize是父容器中目前可以使用的大小,也就是父容器当前剩余的空间大小。很显然,View的宽/高就等于父容器当前剩余的空间大小,这种效果和在布局中使用match_parent完全一致。如何解决这个问题呢?也很简单,代码如下所示。
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
super.onMeasure(widthMeasureSpec, heightMeasureSpec);
int widthSpecMode = MeasureSpec.getMode(widthMeasureSpec);
int widthSpecSize = MeasureSpec.getSize(widthMeasureSpec);
int heightSpecMode = MeasureSpec.getMode(heightMeasureSpec);
int heightSpecSize = MeasureSpec.getSize(heightMeasureSpec);
if (widthSpecMode == MeasureSpec.AT_MOST && heightSpecMode ==
MeasureSpec.AT_MOST) {
setMeasuredDimension(mWidth, mHeight);
} else if (widthSpecMode == MeasureSpec.AT_MOST) {
setMeasuredDimension(mWidth, heightSpecSize);
} else if (heightSpecMode == MeasureSpec.AT_MOST) {
setMeasuredDimension(widthSpecSize, mHeight);
}
}
在上面的代码中,我们只需要给View指定一个默认的内部宽/高(mWidth和mHeight),并在wrap_content时设置此宽/高即可。对于非wrap_content情形,我们沿用系统的测量值即可,至于这个默认的内部宽/高的大小如何指定,这个没有固定的依据,根据需要灵活指定即可。如果查看TextView、ImageView等的源码就可以知道,针对wrap_content情形,它们的onMeasure方法均做了特殊处理,读者可以自行查看它们的源码。
**2.ViewGroup的measure过程**
对于ViewGroup来说,除了完成自己的measure过程以外,还会遍历去调用所有子元素的measure方法,各个子元素再递归去执行这个过程。和View不同的是,ViewGroup是一个抽象类,因此它没有重写View的onMeasure方法,但是它提供了一个叫measureChildren的方法,如下所示。
protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec) {
final int size = mChildrenCount;
final View[] children = mChildren;
for (int i = 0; i < size; ++i) {
final View child = children[i];
if ((child.mViewFlags & VISIBILITY_MASK) ! = GONE) {
measureChild(child, widthMeasureSpec, heightMeasureSpec);
}
}
}
从上述代码来看,ViewGroup在measure时,会对每一个子元素进行measure, measureChild这个方法的实现也很好理解,如下所示。
protected void measureChild(View child, int parentWidthMeasureSpec,
int parentHeightMeasureSpec) {
final LayoutParams lp = child.getLayoutParams();
final int childWidthMeasureSpec = getChildMeasureSpec(parentWidth-
MeasureSpec,
mPaddingLeft + mPaddingRight, lp.width);
final int childHeightMeasureSpec = getChildMeasureSpec(parentHeight-
MeasureSpec,
mPaddingTop + mPaddingBottom, lp.height);
child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}
很显然,measureChild的思想就是取出子元素的LayoutParams,然后再通过getChildMeasureSpec来创建子元素的MeasureSpec,接着将MeasureSpec直接传递给View的measure方法来进行测量。getChildMeasureSpec的工作过程已经在上面进行了详细分析,通过表4-1可以更清楚地了解它的逻辑。
我们知道,ViewGroup并没有定义其测量的具体过程,这是因为ViewGroup是一个抽象类,其测量过程的onMeasure方法需要各个子类去具体实现,比如LinearLayout、RelativeLayout等,为什么ViewGroup不像View一样对其onMeasure方法做统一的实现呢?那是因为不同的ViewGroup子类有不同的布局特性,这导致它们的测量细节各不相同,比如LinearLayout和RelativeLayout这两者的布局特性显然不同,因此ViewGroup无法做统一实现。下面就通过LinearLayout的onMeasure方法来分析ViewGroup的measure过程,其他Layout类型读者可以自行分析。
首先来看LinearLayout的onMeasure方法,如下所示。
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
if (mOrientation == VERTICAL) {
measureVertical(widthMeasureSpec, heightMeasureSpec);
} else {
measureHorizontal(widthMeasureSpec, heightMeasureSpec);
}
}
上述代码很简单,我们选择一个来看一下,比如选择查看竖直布局的LinearLayout的测量过程,即measureVertical方法,measureVertical的源码比较长,下面只描述其大概逻辑,首先看一段代码:
// See how tall everyone is. Also remember max width.
for (int i = 0; i < count; ++i) {
final View child = getVirtualChildAt(i);
...
// Determine how big this child would like to be. If this or
// previous children have given a weight, then we allow it to
// use all available space (and we will shrink things later
// if needed).
measureChildBeforeLayout(
child, i, widthMeasureSpec, 0, heightMeasureSpec,
totalWeight == 0 ? mTotalLength : 0);
if (oldHeight ! = Integer.MIN_VALUE) {
lp.height = oldHeight;
}
final int childHeight = child.getMeasuredHeight();
final int totalLength = mTotalLength;
mTotalLength=Math.max(totalLength, totalLength+childHeight+lp.topMargin +
lp.bottomMargin + getNextLocationOffset(child));
}
从上面这段代码可以看出,系统会遍历子元素并对每个子元素执行measureChild-BeforeLayout方法,这个方法内部会调用子元素的measure方法,这样各个子元素就开始依次进入measure过程,并且系统会通过mTotalLength这个变量来存储LinearLayout在竖直方向的初步高度。每测量一个子元素,mTotalLength就会增加,增加的部分主要包括了子元素的高度以及子元素在竖直方向上的margin等。当子元素测量完毕后,LinearLayout会测量自己的大小,源码如下所示。
// Add in our padding
mTotalLength += mPaddingTop + mPaddingBottom;
int heightSize = mTotalLength;
// Check against our minimum height
heightSize = Math.max(heightSize, getSuggestedMinimumHeight());
// Reconcile our calculated size with the heightMeasureSpec
int heightSizeAndState=resolveSizeAndState(heightSize, heightMeasureSpec,
0);
heightSize = heightSizeAndState & MEASURED_SIZE_MASK;
...
setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec,
childState),
heightSizeAndState);
这里对上述代码进行说明,当子元素测量完毕后,LinearLayout会根据子元素的情况来测量自己的大小。针对竖直的LinearLayout而言,它在水平方向的测量过程遵循View的测量过程,在竖直方向的测量过程则和View有所不同。具体来说是指,如果它的布局中高度采用的是match_parent或者具体数值,那么它的测量过程和View一致,即高度为specSize;如果它的布局中高度采用的是wrap_content,那么它的高度是所有子元素所占用的高度总和,但是仍然不能超过它的父容器的剩余空间,当然它的最终高度还需要考虑其在竖直方向的padding,这个过程可以进一步参看如下源码:
public static int resolveSizeAndState(int size, int measureSpec, int
childMeasuredState) {
int result = size;
int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);
switch (specMode) {
case MeasureSpec.UNSPECIFIED:
result = size;
break;
case MeasureSpec.AT_MOST:
if (specSize < size) {
result = specSize | MEASURED_STATE_TOO_SMALL;
} else {
result = size;
}
break;
case MeasureSpec.EXACTLY:
result = specSize;
break;
}
return result | (childMeasuredState&MEASURED_STATE_MASK);
}
View的measure过程是三大流程中最复杂的一个,measure完成以后,通过getMeasured-Width/Height方法就可以正确地获取到View的测量宽/高。需要注意的是,在某些极端情况下,系统可能需要多次measure才能确定最终的测量宽/高,在这种情形下,在onMeasure方法中拿到的测量宽/高很可能是不准确的。一个比较好的习惯是在onLayout方法中去获取View的测量宽/高或者最终宽/高。
上面已经对View的measure过程进行了详细的分析,现在考虑一种情况,比如我们想在Activity已启动的时候就做一件任务,但是这一件任务需要获取某个View的宽/高。读者可能会说,这很简单啊,在onCreate或者onResume里面去获取这个View的宽/高不就行了?读者可以自行试一下,实际上在onCreate、onStart、onResume中均无法正确得到某个View的宽/高信息,这是因为View的measure过程和Activity的生命周期方法不是同步执行的,因此无法保证Activity执行了onCreate、onStart、onResume时某个View已经测量完毕了,如果View还没有测量完毕,那么获得的宽/高就是0。有没有什么方法能解决这个问题呢?答案是有的,这里给出四种方法来解决这个问题:
(1)Activity/View#onWindowFocusChanged。
onWindowFocusChanged这个方法的含义是:View已经初始化完毕了,宽/高已经准备好了,这个时候去获取宽/高是没问题的。需要注意的是,onWindowFocusChanged会被调用多次,当Activity的窗口得到焦点和失去焦点时均会被调用一次。具体来说,当Activity继续执行和暂停执行时,onWindowFocusChanged均会被调用,如果频繁地进行onResume和onPause,那么onWindowFocusChanged也会被频繁地调用。典型代码如下:
public void onWindowFocusChanged(boolean hasFocus) {
super.onWindowFocusChanged(hasFocus);
if (hasFocus) {
int width = view.getMeasuredWidth();
int height = view.getMeasuredHeight();
}
}
(2)view.post(runnable)。
通过post可以将一个runnable投递到消息队列的尾部,然后等待Looper调用此runnable的时候,View也已经初始化好了。典型代码如下:
protected void onStart() {
super.onStart();
view.post(new Runnable() {
@Override
public void run() {
int width = view.getMeasuredWidth();
int height = view.getMeasuredHeight();
}
});
}
(3)ViewTreeObserver。
使用ViewTreeObserver的众多回调可以完成这个功能,比如使用OnGlobalLayoutListener这个接口,当View树的状态发生改变或者View树内部的View的可见性发现改变时,onGlobalLayout方法将被回调,因此这是获取View的宽/高一个很好的时机。需要注意的是,伴随着View树的状态改变等,onGlobalLayout会被调用多次。典型代码如下:
protected void onStart() {
super.onStart();
ViewTreeObserver observer = view.getViewTreeObserver();
observer.addOnGlobalLayoutListener(new OnGlobalLayoutListener() {
@SuppressWarnings("deprecation")
@Override
public void onGlobalLayout() {
view.getViewTreeObserver().removeGlobalOnLayoutListener(this);
int width = view.getMeasuredWidth();
int height = view.getMeasuredHeight();
}
});
}
(4)view.measure(int widthMeasureSpec, int heightMeasureSpec)。
通过手动对View进行measure来得到View的宽/高。这种方法比较复杂,这里要分情况处理,根据View的LayoutParams来分:
**match_parent**
直接放弃,无法measure出具体的宽/高。原因很简单,根据View的measure过程,如表4-1所示,构造此种MeasureSpec需要知道parentSize,即父容器的剩余空间,而这个时候我们无法知道parentSize的大小,所以理论上不可能测量出View的大小。
**具体的数值(dp/px)**
比如宽/高都是100px,如下measure:
int widthMeasureSpec = MeasureSpec.makeMeasureSpec(100, MeasureSpec.
EXACTLY);
int heightMeasureSpec = MeasureSpec.makeMeasureSpec(100, MeasureSpec.
EXACTLY);
view.measure(widthMeasureSpec, heightMeasureSpec);
**wrap_content**
如下measure:
int widthMeasureSpec = MeasureSpec.makeMeasureSpec( (1 << 30) -1,
MeasureSpec.AT_MOST);
int heightMeasureSpec = MeasureSpec.makeMeasureSpec( (1 << 30) -1,
MeasureSpec.AT_MOST);
view.measure(widthMeasureSpec, heightMeasureSpec);
注意到(1 << 30)-1,通过分析MeasureSpec的实现可以知道,View的尺寸使用30位二进制表示,也就是说最大是30个1(即2^30-1),也就是(1 << 30) -1,在最大化模式下,我们用View理论上能支持的最大值去构造MeasureSpec是合理的。
关于View的measure,网络上有两个错误的用法。为什么说是错误的,首先其违背了系统的内部实现规范(因为无法通过错误的MeasureSpec去得出合法的SpecMode,从而导致measure过程出错),其次不能保证一定能measure出正确的结果。
第一种错误用法:
int widthMeasureSpec = MeasureSpec.makeMeasureSpec(-1, MeasureSpec.
UNSPECIFIED);
int heightMeasureSpec = MeasureSpec.makeMeasureSpec(-1, MeasureSpec.
UNSPECIFIED);
view.measure(widthMeasureSpec, heightMeasureSpec);
第二种错误用法:
view.measure(LayoutParams.WRAP_CONTENT, LayoutParams.WRAP_CONTENT)
- 前言
- 第1章 Activity的生命周期和启动模式
- 1.1 Activity的生命周期全面分析
- 1.1.1 典型情况下的生命周期分析
- 1.1.2 异常情况下的生命周期分析
- 1.2 Activity的启动模式
- 1.2.1 Activity的LaunchMode
- 1.2.2 Activity的Flags
- 1.3 IntentFilter的匹配规则
- 第2章 IPC机制
- 2.1 Android IPC简介
- 2.2 Android中的多进程模式
- 2.2.1 开启多进程模式
- 2.2.2 多进程模式的运行机制
- 2.3 IPC基础概念介绍
- 2.3.1 Serializable接口
- 2.3.2 Parcelable接口
- 2.3.3 Binder
- 2.4 Android中的IPC方式
- 2.4.1 使用Bundle
- 2.4.2 使用文件共享
- 2.4.3 使用Messenger
- 2.4.4 使用AIDL
- 2.4.5 使用ContentProvider
- 2.4.6 使用Socket
- 2.5 Binder连接池
- 2.6 选用合适的IPC方式
- 第3章 View的事件体系
- 3.1 View基础知识
- 3.1.1 什么是View
- 3.1.2 View的位置参数
- 3.1.3 MotionEvent和TouchSlop
- 3.1.4 VelocityTracker、GestureDetector和Scroller
- 3.2 View的滑动
- 3.2.1 使用scrollTo/scrollBy
- 3.2.2 使用动画
- 3.2.3 改变布局参数
- 3.2.4 各种滑动方式的对比
- 3.3 弹性滑动
- 3.3.1 使用Scroller7
- 3.3.2 通过动画
- 3.3.3 使用延时策略
- 3.4 View的事件分发机制
- 3.4.1 点击事件的传递规则
- 3.4.2 事件分发的源码解析
- 3.5 View的滑动冲突
- 3.5.1 常见的滑动冲突场景
- 3.5.2 滑动冲突的处理规则
- 3.5.3 滑动冲突的解决方式
- 第4章 View的工作原理
- 4.1 初识ViewRoot和DecorView
- 4.2 理解MeasureSpec
- 4.2.1 MeasureSpec
- 4.2.2 MeasureSpec和LayoutParams的对应关系
- 4.3 View的工作流程
- 4.3.1 measure过程
- 4.3.2 layout过程
- 4.3.3 draw过程
- 4.4 自定义View
- 4.4.1 自定义View的分类
- 4.4.2 自定义View须知
- 4.4.3 自定义View示例
- 4.4.4 自定义View的思想
- 第5章 理解RemoteViews
- 5.1 RemoteViews的应用
- 5.1.1 RemoteViews在通知栏上的应用
- 5.1.2 RemoteViews在桌面小部件上的应用
- 5.1.3 PendingIntent概述
- 5.2 RemoteViews的内部机制
- 5.3 RemoteViews的意义
- 第6章 Android的Drawable
- 6.1 Drawable简介
- 6.2 Drawable的分类
- 6.2.1 BitmapDrawable2
- 6.2.2 ShapeDrawable
- 6.2.3 LayerDrawable
- 6.2.4 StateListDrawable
- 6.2.5 LevelListDrawable
- 6.2.6 TransitionDrawable
- 6.2.7 InsetDrawable
- 6.2.8 ScaleDrawable
- 6.2.9 ClipDrawable
- 6.3 自定义Drawable
- 第7章 Android动画深入分析
- 7.1 View动画
- 7.1.1 View动画的种类
- 7.1.2 自定义View动画
- 7.1.3 帧动画
- 7.2 View动画的特殊使用场景
- 7.2.1 LayoutAnimation
- 7.2.2 Activity的切换效果
- 7.3 属性动画
- 7.3.1 使用属性动画
- 7.3.2 理解插值器和估值器 /
- 7.3.3 属性动画的监听器
- 7.3.4 对任意属性做动画
- 7.3.5 属性动画的工作原理
- 7.4 使用动画的注意事项
- 第8章 理解Window和WindowManager
- 8.1 Window和WindowManager
- 8.2 Window的内部机制
- 8.2.1 Window的添加过程
- 8.2.2 Window的删除过程
- 8.2.3 Window的更新过程
- 8.3 Window的创建过程
- 8.3.1 Activity的Window创建过程
- 8.3.2 Dialog的Window创建过程
- 8.3.3 Toast的Window创建过程
- 第9章 四大组件的工作过程
- 9.1 四大组件的运行状态
- 9.2 Activity的工作过程
- 9.3 Service的工作过程
- 9.3.1 Service的启动过程
- 9.3.2 Service的绑定过程
- 9.4 BroadcastReceiver的工作过程
- 9.4.1 广播的注册过程
- 9.4.2 广播的发送和接收过程
- 9.5 ContentProvider的工作过程
- 第10章 Android的消息机制
- 10.1 Android的消息机制概述
- 10.2 Android的消息机制分析
- 10.2.1 ThreadLocal的工作原理
- 10.2.2 消息队列的工作原理
- 10.2.3 Looper的工作原理
- 10.2.4 Handler的工作原理
- 10.3 主线程的消息循环
- 第11章 Android的线程和线程池
- 11.1 主线程和子线程
- 11.2 Android中的线程形态
- 11.2.1 AsyncTask
- 11.2.2 AsyncTask的工作原理
- 11.2.3 HandlerThread
- 11.2.4 IntentService
- 11.3 Android中的线程池
- 11.3.1 ThreadPoolExecutor
- 11.3.2 线程池的分类
- 第12章 Bitmap的加载和Cache
- 12.1 Bitmap的高效加载
- 12.2 Android中的缓存策略
- 12.2.1 LruCache
- 12.2.2 DiskLruCache
- 12.2.3 ImageLoader的实现446
- 12.3 ImageLoader的使用
- 12.3.1 照片墙效果
- 12.3.2 优化列表的卡顿现象
- 第13章 综合技术
- 13.1 使用CrashHandler来获取应用的crash信息
- 13.2 使用multidex来解决方法数越界
- 13.3 Android的动态加载技术
- 13.4 反编译初步
- 13.4.1 使用dex2jar和jd-gui反编译apk
- 13.4.2 使用apktool对apk进行二次打包
- 第14章 JNI和NDK编程
- 14.1 JNI的开发流程
- 14.2 NDK的开发流程
- 14.3 JNI的数据类型和类型签名
- 14.4 JNI调用Java方法的流程
- 第15章 Android性能优化
- 15.1 Android的性能优化方法
- 15.1.1 布局优化
- 15.1.2 绘制优化
- 15.1.3 内存泄露优化
- 15.1.4 响应速度优化和ANR日志分析
- 15.1.5 ListView和Bitmap优化
- 15.1.6 线程优化
- 15.1.7 一些性能优化建议
- 15.2 内存泄露分析之MAT工具
- 15.3 提高程序的可维护性