#### 11.3.1 ThreadPoolExecutor
[ThreadPoolExecutor](https://www.androidos.net.cn/android/6.0.1_r16/xref/libcore/luni/src/main/java/java/util/concurrent/ThreadPoolExecutor.java)是线程池的真正实现,它的构造方法提供了一系列参数来配置线程池,下面介绍ThreadPoolExecutor的构造方法中各个参数的含义,这些参数将会直接影响到线程池的功能特性,下面是ThreadPoolExecutor的一个比较常用的构造方法。
```
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory)
```
* **corePoolSize**
**线程池的核心线程数,默认情况下,核心线程会在线程池中一直存活,即使它们处于闲置状态**。*如果将ThreadPoolExecutor的[allowCoreThreadTimeOut](https://developer.android.google.cn/reference/kotlin/java/util/concurrent/ThreadPoolExecutor?hl=en#allowsCoreThreadTimeOut())属性设置为true,那么闲置的核心线程在等待新任务到来时会有超时策略,这个时间间隔由keepAliveTime所指定,当等待时间超过keepAliveTime所指定的时长后,核心线程就会被终止*。
* **maximumPoolSize**
**线程池所能容纳的最大线程数,当活动线程数达到这个数值后,后续的新任务将会被阻塞**。
* **keepAliveTime**
**非核心线程闲置时的超时时长,超过这个时长,非核心线程就会被回收**。当ThreadPool-Executor的**allowCoreThreadTimeOut属性设置为true时,keepAliveTime同样会作用于核心线程**。
* **unit**
**用于指定keepAliveTime参数的时间单位**,这是一个枚举,常用的有TimeUnit. MILLISECONDS(毫秒)、TimeUnit.SECONDS(秒)以及TimeUnit.MINUTES(分钟)等。
* **workQueue**
**线程池中的任务队列,通过线程池的execute方法提交的Runnable对象会存储在这个参数中**。
* **threadFactory**
**线程工厂,为线程池提供创建新线程的功能**。
**ThreadFactory是一个接口,它只有一个方法**:`Thread newThread(Runnable r)`。
除了上面的这些主要参数外,ThreadPoolExecutor**还有一个不常用的参数RejectedExecutionHandler handler**。**当线程池无法执行新任务时,这可能是由于任务队列已满或者是无法成功执行任务,这个时候ThreadPoolExecutor会调用`RejectedExecutionHandle`r的rejectedExecution方法来通知调用者,默认情况下rejectedExecution方法会直接抛出一个RejectedExecutionException**。
```
public interface RejectedExecutionHandler {
void rejectedExecution(Runnable r, ThreadPoolExecutor executor);
}
private static final RejectedExecutionHandler defaultHandler =new AbortPolicy();
```
:-: ![](https://img.kancloud.cn/29/45/29452a0b3876ef068d07e4aef1244341_473x114.png)
RejectedExecutionHandler的树结构
>[success]注意:从源码和树结构中可以看出,这个RejectedExecutionHandler是一个接口,但它并不是handler,只是名字里有handler,在ThreadPoolExecutor这个类里面,它有**CallerRunsPolicy**、**AbortPolicy**、**DiscardPolicy**和**DiscardOldestPolicy**四个实现类。
**ThreadPoolExecutor为`RejectedExecutionHandler`提供了几个可选值**:**CallerRunsPolicy**、**AbortPolicy**、**DiscardPolicy**和**DiscardOldestPolicy**,其中**AbortPolicy是默认值(源码中可以看出),它会直接抛出RejectedExecutionException**,由于`RejectedExecutionHandler`这个参数不常用,这里就不再具体介绍了。
ThreadPoolExecutor执行任务时大致遵循如下规则:
* (1)**如果线程池中的线程数量未达到核心线程的数量,那么会直接启动一个核心线程来执行任务**。
* (2)**如果线程池中的线程数量已经达到或者超过核心线程的数量,那么任务会被插入到任务队列中排队等待执行**。
* (3)**如果在步骤2中无法将任务插入到任务队列中,这往往是由于任务队列已满,这个时候如果线程数量未达到线程池规定的最大值,那么会立刻启动一个非核心线程来执行任务**。
* (4)**如果步骤3中线程数量已经达到线程池规定的最大值,那么就拒绝执行此任务,ThreadPoolExecutor会调用RejectedExecutionHandler的rejectedExecution方法来通知调用者**。
ThreadPoolExecutor的参数配置在AsyncTask中有明显的体现,下面是**AsyncTask中的线程池的配置情况**:
```
private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
private static final int CORE_POOL_SIZE = CPU_COUNT + 1;
private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
private static final int KEEP_ALIVE = 1;
private static final ThreadFactory sThreadFactory = new ThreadFactory() {
private final AtomicInteger mCount = new AtomicInteger(1);
public Thread newThread(Runnable r) {
return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
}
};
private static final BlockingQueue<Runnable> sPoolWorkQueue =
new LinkedBlockingQueue<Runnable>(128);
/**
* An {@link Executor} that can be used to execute tasks in parallel.
*/
public static final Executor THREAD_POOL_EXECUTOR
= new ThreadPoolExecutor(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE,
TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory);
```
从上面的代码可以知道,AsyncTask对`THREAD_POOL_EXECUTOR`这个线程池**进行了配置**,配置后的线程池规格如下:
* · **核心线程数等于CPU核心数 + 1**;
* · **线程池的最大线程数为CPU核心数的2倍 + 1**;
* · **核心线程无超时机制,非核心线程在闲置时的超时时间为1秒**;
* · **任务队列的容量为128**。
- 前言
- 第1章 Activity的生命周期和启动模式
- 1.1 Activity的生命周期全面分析
- 1.1.1 典型情况下的生命周期分析
- 1.1.2 异常情况下的生命周期分析
- 1.2 Activity的启动模式
- 1.2.1 Activity的LaunchMode
- 1.2.2 Activity的Flags
- 1.3 IntentFilter的匹配规则
- 第2章 IPC机制
- 2.1 Android IPC简介
- 2.2 Android中的多进程模式
- 2.2.1 开启多进程模式
- 2.2.2 多进程模式的运行机制
- 2.3 IPC基础概念介绍
- 2.3.1 Serializable接口
- 2.3.2 Parcelable接口
- 2.3.3 Binder
- 2.4 Android中的IPC方式
- 2.4.1 使用Bundle
- 2.4.2 使用文件共享
- 2.4.3 使用Messenger
- 2.4.4 使用AIDL
- 2.4.5 使用ContentProvider
- 2.4.6 使用Socket
- 2.5 Binder连接池
- 2.6 选用合适的IPC方式
- 第3章 View的事件体系
- 3.1 View基础知识
- 3.1.1 什么是View
- 3.1.2 View的位置参数
- 3.1.3 MotionEvent和TouchSlop
- 3.1.4 VelocityTracker、GestureDetector和Scroller
- 3.2 View的滑动
- 3.2.1 使用scrollTo/scrollBy
- 3.2.2 使用动画
- 3.2.3 改变布局参数
- 3.2.4 各种滑动方式的对比
- 3.3 弹性滑动
- 3.3.1 使用Scroller7
- 3.3.2 通过动画
- 3.3.3 使用延时策略
- 3.4 View的事件分发机制
- 3.4.1 点击事件的传递规则
- 3.4.2 事件分发的源码解析
- 3.5 View的滑动冲突
- 3.5.1 常见的滑动冲突场景
- 3.5.2 滑动冲突的处理规则
- 3.5.3 滑动冲突的解决方式
- 第4章 View的工作原理
- 4.1 初识ViewRoot和DecorView
- 4.2 理解MeasureSpec
- 4.2.1 MeasureSpec
- 4.2.2 MeasureSpec和LayoutParams的对应关系
- 4.3 View的工作流程
- 4.3.1 measure过程
- 4.3.2 layout过程
- 4.3.3 draw过程
- 4.4 自定义View
- 4.4.1 自定义View的分类
- 4.4.2 自定义View须知
- 4.4.3 自定义View示例
- 4.4.4 自定义View的思想
- 第5章 理解RemoteViews
- 5.1 RemoteViews的应用
- 5.1.1 RemoteViews在通知栏上的应用
- 5.1.2 RemoteViews在桌面小部件上的应用
- 5.1.3 PendingIntent概述
- 5.2 RemoteViews的内部机制
- 5.3 RemoteViews的意义
- 第6章 Android的Drawable
- 6.1 Drawable简介
- 6.2 Drawable的分类
- 6.2.1 BitmapDrawable2
- 6.2.2 ShapeDrawable
- 6.2.3 LayerDrawable
- 6.2.4 StateListDrawable
- 6.2.5 LevelListDrawable
- 6.2.6 TransitionDrawable
- 6.2.7 InsetDrawable
- 6.2.8 ScaleDrawable
- 6.2.9 ClipDrawable
- 6.3 自定义Drawable
- 第7章 Android动画深入分析
- 7.1 View动画
- 7.1.1 View动画的种类
- 7.1.2 自定义View动画
- 7.1.3 帧动画
- 7.2 View动画的特殊使用场景
- 7.2.1 LayoutAnimation
- 7.2.2 Activity的切换效果
- 7.3 属性动画
- 7.3.1 使用属性动画
- 7.3.2 理解插值器和估值器 /
- 7.3.3 属性动画的监听器
- 7.3.4 对任意属性做动画
- 7.3.5 属性动画的工作原理
- 7.4 使用动画的注意事项
- 第8章 理解Window和WindowManager
- 8.1 Window和WindowManager
- 8.2 Window的内部机制
- 8.2.1 Window的添加过程
- 8.2.2 Window的删除过程
- 8.2.3 Window的更新过程
- 8.3 Window的创建过程
- 8.3.1 Activity的Window创建过程
- 8.3.2 Dialog的Window创建过程
- 8.3.3 Toast的Window创建过程
- 第9章 四大组件的工作过程
- 9.1 四大组件的运行状态
- 9.2 Activity的工作过程
- 9.3 Service的工作过程
- 9.3.1 Service的启动过程
- 9.3.2 Service的绑定过程
- 9.4 BroadcastReceiver的工作过程
- 9.4.1 广播的注册过程
- 9.4.2 广播的发送和接收过程
- 9.5 ContentProvider的工作过程
- 第10章 Android的消息机制
- 10.1 Android的消息机制概述
- 10.2 Android的消息机制分析
- 10.2.1 ThreadLocal的工作原理
- 10.2.2 消息队列的工作原理
- 10.2.3 Looper的工作原理
- 10.2.4 Handler的工作原理
- 10.3 主线程的消息循环
- 第11章 Android的线程和线程池
- 11.1 主线程和子线程
- 11.2 Android中的线程形态
- 11.2.1 AsyncTask
- 11.2.2 AsyncTask的工作原理
- 11.2.3 HandlerThread
- 11.2.4 IntentService
- 11.3 Android中的线程池
- 11.3.1 ThreadPoolExecutor
- 11.3.2 线程池的分类
- 第12章 Bitmap的加载和Cache
- 12.1 Bitmap的高效加载
- 12.2 Android中的缓存策略
- 12.2.1 LruCache
- 12.2.2 DiskLruCache
- 12.2.3 ImageLoader的实现446
- 12.3 ImageLoader的使用
- 12.3.1 照片墙效果
- 12.3.2 优化列表的卡顿现象
- 第13章 综合技术
- 13.1 使用CrashHandler来获取应用的crash信息
- 13.2 使用multidex来解决方法数越界
- 13.3 Android的动态加载技术
- 13.4 反编译初步
- 13.4.1 使用dex2jar和jd-gui反编译apk
- 13.4.2 使用apktool对apk进行二次打包
- 第14章 JNI和NDK编程
- 14.1 JNI的开发流程
- 14.2 NDK的开发流程
- 14.3 JNI的数据类型和类型签名
- 14.4 JNI调用Java方法的流程
- 第15章 Android性能优化
- 15.1 Android的性能优化方法
- 15.1.1 布局优化
- 15.1.2 绘制优化
- 15.1.3 内存泄露优化
- 15.1.4 响应速度优化和ANR日志分析
- 15.1.5 ListView和Bitmap优化
- 15.1.6 线程优化
- 15.1.7 一些性能优化建议
- 15.2 内存泄露分析之MAT工具
- 15.3 提高程序的可维护性