12.2.2 DiskLruCache
DiskLruCache用于实现存储设备缓存,即磁盘缓存,它通过将缓存对象写入文件系统从而实现缓存的效果。DiskLruCache得到了Android官方文档的推荐,但它不属于Android SDK的一部分,它的源码可以从如下网址得到:
https://android.googlesource.com/platform/libcore/+/android-4.1.1_r1/lun
i/src/main/java/libcore/io/DiskLruCache.java
需要注意的是,从上述网址获取的DiskLruCache的源码并不能直接在Android中使用,需要稍微修改编译错误。下面分别从DiskLruCache的创建、缓存查找和缓存添加这三个方面来介绍DiskLruCache的使用方式。
1.DiskLruCache的创建
DiskLruCache并不能通过构造方法来创建,它提供了open方法用于创建自身,如下所示。
public static DiskLruCache open(File directory, int appVersion, int
valueCount, long maxSize)
open方法有四个参数,其中第一个参数表示磁盘缓存在文件系统中的存储路径。缓存路径可以选择SD卡上的缓存目录,具体是指/sdcard/Android/data/package_name/cache目录,其中package_name表示当前应用的包名,当应用被卸载后,此目录会一并被删除。当然也可以选择SD卡上的其他指定目录,还可以选择data下的当前应用的目录,具体可根据需要灵活设定。这里给出一个建议:如果应用卸载后就希望删除缓存文件,那么就选择SD卡上的缓存目录,如果希望保留缓存数据那就应该选择SD卡上的其他特定目录。
第二个参数表示应用的版本号,一般设为1即可。当版本号发生改变时DiskLruCache会清空之前所有的缓存文件,而这个特性在实际开发中作用并不大,很多情况下即使应用的版本号发生了改变缓存文件却仍然是有效的,因此这个参数设为1比较好。
第三个参数表示单个节点所对应的数据的个数,一般设为1即可。第四个参数表示缓存的总大小,比如50MB,当缓存大小超出这个设定值后,DiskLruCache会清除一些缓存从而保证总大小不大于这个设定值。下面是一个典型的DiskLruCache的创建过程:
private static final long DISK_CACHE_SIZE = 1024 * 1024 * 50; //50MB
File diskCacheDir = getDiskCacheDir(mContext, "bitmap");
if (! diskCacheDir.exists()) {
diskCacheDir.mkdirs();
}
mDiskLruCache = DiskLruCache.open(diskCacheDir, 1, 1, DISK_CACHE_SIZE);
2.DiskLruCache的缓存添加
DiskLruCache的缓存添加的操作是通过Editor完成的,Editor表示一个缓存对象的编辑对象。这里仍然以图片缓存举例,首先需要获取图片url所对应的key,然后根据key就可以通过edit()来获取Editor对象,如果这个缓存正在被编辑,那么edit()会返回null,即DiskLruCache不允许同时编辑一个缓存对象。之所以要把url转换成key,是因为图片的url中很可能有特殊字符,这将影响url在Android中直接使用,一般采用url的md5值作为key,如下所示。
private String hashKeyFormUrl(String url) {
String cacheKey;
try {
final MessageDigest mDigest = MessageDigest.getInstance("MD5");
mDigest.update(url.getBytes());
cacheKey = bytesToHexString(mDigest.digest());
} catch (NoSuchAlgorithmException e) {
cacheKey = String.valueOf(url.hashCode());
}
return cacheKey;
}
private String bytesToHexString(byte[] bytes) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < bytes.length; i++) {
String hex = Integer.toHexString(0xFF & bytes[i]);
if (hex.length() == 1) {
sb.append('0');
}
sb.append(hex);
}
return sb.toString();
}
将图片的url转成key以后,就可以获取Editor对象了。对于这个key来说,如果当前不存在其他Editor对象,那么edit()就会返回一个新的Editor对象,通过它就可以得到一个文件输出流。需要注意的是,由于前面在DiskLruCache的open方法中设置了一个节点只能有一个数据,因此下面的DISK_CACHE_INDEX常量直接设为0即可,如下所示。
String key = hashKeyFormUrl(url);
DiskLruCache.Editor editor = mDiskLruCache.edit(key);
if (editor ! = null) {
OutputStream outputStream = editor.newOutputStream(DISK_CACHE_INDEX);
}
有了文件输出流,接下来要怎么做呢?其实是这样的,当从网络下载图片时,图片就可以通过这个文件输出流写入到文件系统上,这个过程的实现如下所示。
public boolean downloadUrlToStream(String urlString,
OutputStream outputStream) {
HttpURLConnection urlConnection = null;
BufferedOutputStream out = null;
BufferedInputStream in = null;
try {
final URL url = new URL(urlString);
urlConnection = (HttpURLConnection) url.openConnection();
in = new BufferedInputStream(urlConnection.getInputStream(),
IO_BUFFER_SIZE);
out = new BufferedOutputStream(outputStream, IO_BUFFER_SIZE);
int b;
while ((b = in.read()) ! = -1) {
out.write(b);
}
return true;
} catch (IOException e) {
Log.e(TAG, "downloadBitmap failed." + e);
} finally {
if (urlConnection ! = null) {
urlConnection.disconnect();
}
MyUtils.close(out);
MyUtils.close(in);
}
return false;
}
经过上面的步骤,其实并没有真正地将图片写入文件系统,还必须通过Editor的commit()来提交写入操作,如果图片下载过程发生了异常,那么还可以通过Editor的abort()来回退整个操作,这个过程如下所示。
OutputStream outputStream = editor.newOutputStream(DISK_CACHE_INDEX);
if (downloadUrlToStream(url, outputStream)) {
editor.commit();
} else {
editor.abort();
}
mDiskLruCache.flush();
经过上面的几个步骤,图片已经被正确地写入到文件系统了,接下来图片获取的操作就不需要请求网络了。
3.DiskLruCache的缓存查找
和缓存的添加过程类似,缓存查找过程也需要将url转换为key,然后通过DiskLruCache的get方法得到一个Snapshot对象,接着再通过Snapshot对象即可得到缓存的文件输入流,有了文件输出流,自然就可以得到Bitmap对象了。为了避免加载图片过程中导致的OOM问题,一般不建议直接加载原始图片。在第12.1节中已经介绍了通过BitmapFactory.Options对象来加载一张缩放后的图片,但是那种方法对FileInputStream的缩放存在问题,原因是FileInputStream是一种有序的文件流,而两次decodeStream调用影响了文件流的位置属性,导致了第二次decodeStream时得到的是null。为了解决这个问题,可以通过文件流来得到它所对应的文件描述符,然后再通过BitmapFactory.decodeFileDescriptor方法来加载一张缩放后的图片,这个过程的实现如下所示。
Bitmap bitmap = null;
String key = hashKeyFormUrl(url);
DiskLruCache.Snapshot snapShot = mDiskLruCache.get(key);
if (snapShot ! = null) {
FileInputStream fileInputStream = (FileInputStream)snapShot.getInput-
Stream(DISK_CACHE_INDEX);
FileDescriptor fileDescriptor = fileInputStream.getFD();
bitmap = mImageResizer.decodeSampledBitmapFromFileDescriptor
(fileDescriptor,
reqWidth, reqHeight);
if (bitmap ! = null) {
addBitmapToMemoryCache(key, bitmap);
}
}
上面介绍了DiskLruCache的创建、缓存的添加和查找过程,读者应该对DiskLruCache的使用方式有了一个大致的了解,除此之外,DiskLruCache还提供了remove、delete等方法用于磁盘缓存的删除操作。关于DiskLruCache的内部实现这里就不再介绍了,读者感兴趣的话可以查看它的源码实现。
- 前言
- 第1章 Activity的生命周期和启动模式
- 1.1 Activity的生命周期全面分析
- 1.1.1 典型情况下的生命周期分析
- 1.1.2 异常情况下的生命周期分析
- 1.2 Activity的启动模式
- 1.2.1 Activity的LaunchMode
- 1.2.2 Activity的Flags
- 1.3 IntentFilter的匹配规则
- 第2章 IPC机制
- 2.1 Android IPC简介
- 2.2 Android中的多进程模式
- 2.2.1 开启多进程模式
- 2.2.2 多进程模式的运行机制
- 2.3 IPC基础概念介绍
- 2.3.1 Serializable接口
- 2.3.2 Parcelable接口
- 2.3.3 Binder
- 2.4 Android中的IPC方式
- 2.4.1 使用Bundle
- 2.4.2 使用文件共享
- 2.4.3 使用Messenger
- 2.4.4 使用AIDL
- 2.4.5 使用ContentProvider
- 2.4.6 使用Socket
- 2.5 Binder连接池
- 2.6 选用合适的IPC方式
- 第3章 View的事件体系
- 3.1 View基础知识
- 3.1.1 什么是View
- 3.1.2 View的位置参数
- 3.1.3 MotionEvent和TouchSlop
- 3.1.4 VelocityTracker、GestureDetector和Scroller
- 3.2 View的滑动
- 3.2.1 使用scrollTo/scrollBy
- 3.2.2 使用动画
- 3.2.3 改变布局参数
- 3.2.4 各种滑动方式的对比
- 3.3 弹性滑动
- 3.3.1 使用Scroller7
- 3.3.2 通过动画
- 3.3.3 使用延时策略
- 3.4 View的事件分发机制
- 3.4.1 点击事件的传递规则
- 3.4.2 事件分发的源码解析
- 3.5 View的滑动冲突
- 3.5.1 常见的滑动冲突场景
- 3.5.2 滑动冲突的处理规则
- 3.5.3 滑动冲突的解决方式
- 第4章 View的工作原理
- 4.1 初识ViewRoot和DecorView
- 4.2 理解MeasureSpec
- 4.2.1 MeasureSpec
- 4.2.2 MeasureSpec和LayoutParams的对应关系
- 4.3 View的工作流程
- 4.3.1 measure过程
- 4.3.2 layout过程
- 4.3.3 draw过程
- 4.4 自定义View
- 4.4.1 自定义View的分类
- 4.4.2 自定义View须知
- 4.4.3 自定义View示例
- 4.4.4 自定义View的思想
- 第5章 理解RemoteViews
- 5.1 RemoteViews的应用
- 5.1.1 RemoteViews在通知栏上的应用
- 5.1.2 RemoteViews在桌面小部件上的应用
- 5.1.3 PendingIntent概述
- 5.2 RemoteViews的内部机制
- 5.3 RemoteViews的意义
- 第6章 Android的Drawable
- 6.1 Drawable简介
- 6.2 Drawable的分类
- 6.2.1 BitmapDrawable2
- 6.2.2 ShapeDrawable
- 6.2.3 LayerDrawable
- 6.2.4 StateListDrawable
- 6.2.5 LevelListDrawable
- 6.2.6 TransitionDrawable
- 6.2.7 InsetDrawable
- 6.2.8 ScaleDrawable
- 6.2.9 ClipDrawable
- 6.3 自定义Drawable
- 第7章 Android动画深入分析
- 7.1 View动画
- 7.1.1 View动画的种类
- 7.1.2 自定义View动画
- 7.1.3 帧动画
- 7.2 View动画的特殊使用场景
- 7.2.1 LayoutAnimation
- 7.2.2 Activity的切换效果
- 7.3 属性动画
- 7.3.1 使用属性动画
- 7.3.2 理解插值器和估值器 /
- 7.3.3 属性动画的监听器
- 7.3.4 对任意属性做动画
- 7.3.5 属性动画的工作原理
- 7.4 使用动画的注意事项
- 第8章 理解Window和WindowManager
- 8.1 Window和WindowManager
- 8.2 Window的内部机制
- 8.2.1 Window的添加过程
- 8.2.2 Window的删除过程
- 8.2.3 Window的更新过程
- 8.3 Window的创建过程
- 8.3.1 Activity的Window创建过程
- 8.3.2 Dialog的Window创建过程
- 8.3.3 Toast的Window创建过程
- 第9章 四大组件的工作过程
- 9.1 四大组件的运行状态
- 9.2 Activity的工作过程
- 9.3 Service的工作过程
- 9.3.1 Service的启动过程
- 9.3.2 Service的绑定过程
- 9.4 BroadcastReceiver的工作过程
- 9.4.1 广播的注册过程
- 9.4.2 广播的发送和接收过程
- 9.5 ContentProvider的工作过程
- 第10章 Android的消息机制
- 10.1 Android的消息机制概述
- 10.2 Android的消息机制分析
- 10.2.1 ThreadLocal的工作原理
- 10.2.2 消息队列的工作原理
- 10.2.3 Looper的工作原理
- 10.2.4 Handler的工作原理
- 10.3 主线程的消息循环
- 第11章 Android的线程和线程池
- 11.1 主线程和子线程
- 11.2 Android中的线程形态
- 11.2.1 AsyncTask
- 11.2.2 AsyncTask的工作原理
- 11.2.3 HandlerThread
- 11.2.4 IntentService
- 11.3 Android中的线程池
- 11.3.1 ThreadPoolExecutor
- 11.3.2 线程池的分类
- 第12章 Bitmap的加载和Cache
- 12.1 Bitmap的高效加载
- 12.2 Android中的缓存策略
- 12.2.1 LruCache
- 12.2.2 DiskLruCache
- 12.2.3 ImageLoader的实现446
- 12.3 ImageLoader的使用
- 12.3.1 照片墙效果
- 12.3.2 优化列表的卡顿现象
- 第13章 综合技术
- 13.1 使用CrashHandler来获取应用的crash信息
- 13.2 使用multidex来解决方法数越界
- 13.3 Android的动态加载技术
- 13.4 反编译初步
- 13.4.1 使用dex2jar和jd-gui反编译apk
- 13.4.2 使用apktool对apk进行二次打包
- 第14章 JNI和NDK编程
- 14.1 JNI的开发流程
- 14.2 NDK的开发流程
- 14.3 JNI的数据类型和类型签名
- 14.4 JNI调用Java方法的流程
- 第15章 Android性能优化
- 15.1 Android的性能优化方法
- 15.1.1 布局优化
- 15.1.2 绘制优化
- 15.1.3 内存泄露优化
- 15.1.4 响应速度优化和ANR日志分析
- 15.1.5 ListView和Bitmap优化
- 15.1.6 线程优化
- 15.1.7 一些性能优化建议
- 15.2 内存泄露分析之MAT工具
- 15.3 提高程序的可维护性