#### 2.4.2 使用文件共享
**共享文件也是一种不错的进程间通信方式,两个进程通过读/写同一个文件来交换数据,比如A进程把数据写入文件,B进程通过读取这个文件来获取数据**。
我们知道,在Windows上,一个文件如果被加了排斥锁将会导致其他线程无法对其进行访问,包括读和写,而**由于Android系统基于Linux,使得其并发读/写文件可以没有限制地进行,甚至两个线程同时对同一个文件进行写操作都是允许的,尽管这可能出问题。通过文件交换数据很好使用,除了可以交换一些文本信息外,我们还可以序列化一个对象到文件系统中的同时从另一个进程中恢复这个对象**,下面就展示这种使用方法。
还是本章刚开始的那个例子(**在一个进程中修改sUserId的值只会影响当前进程,对其他进程不会造成任何影响**),这次我们在MainActivity的onResume中序列化一个User对象到sd卡上的一个文件里,然后在SecondActivity的onResume中去反序列化,我们期望在SecondActivity中能够正确地恢复User对象的值。关键代码如下:
```
//在MainActivity中的修改
private void persistToFile() {
new Thread(new Runnable() {
@Override
public void run() {
User user = new User(1, "hello world", false);
File dir = new File(MyConstants.CHAPTER_2_PATH);
if (!dir.exists()) {
dir.mkdirs();
}
File cachedFile = new File(MyConstants.CACHE_FILE_PATH);
ObjectOutputStream objectOutputStream = null;
try {
objectOutputStream = new ObjectOutputStream(
new FileOutputStream(cachedFile));
objectOutputStream.writeObject(user);
Log.d(TAG, "persist user:" + user);
} catch (IOException e) {
e.printStackTrace();
} finally {
MyUtils.close(objectOutputStream);
}
}
}).start();
}
//SecondActivity中的修改
private void recoverFromFile() {
new Thread(new Runnable() {
@Override
public void run() {
User user = null;
File cachedFile = new File(MyConstants.CACHE_FILE_PATH);
if (cachedFile.exists()) {
ObjectInputStream objectInputStream = null;
try {
objectInputStream = new ObjectInputStream(
new FileInputStream(cachedFile));
user = (User) objectInputStream.readObject();
Log.d(TAG, "recover user:" + user);
} catch (IOException e) {
e.printStackTrace();
} catch (ClassNotFoundException e) {
e.printStackTrace();
} finally {
MyUtils.close(objectInputStream);
}
}
}
}).start();
}
```
下面看一下log,很显然,在SecondActivity中成功地从文件从恢复了之前存储的User对象的内容,这里之所以说内容,是因为**反序列化得到的对象只是在内容上和序列化之前的对象是一样的,但它们本质上还是两个对象**。
```
D/MainActivity(10744): persist user:User:{userId:1, userName:hello world,
isMale:false}, with child:{null}
D/SecondActivity(10877): recover user:User:{userId:1, userName:hello world,
isMale:false}, with child:{null}
```
**通过文件共享这种方式来共享数据对文件格式是没有具体要求的,比如可以是文本文件,也可以是XML文件,只要读/写双方约定数据格式即可**。
**通过文件共享的方式也是有局限性的,比如并发读/写的问题**,像上面的那个例子,**如果并发读/写,那么我们读出的内容就有可能不是最新的,如果是并发写的话那就更严重了。因此我们要尽量避免并发写这种情况的发生或者考虑使用线程同步来限制多个线程的写操作**。通过上面的分析,我们可以知道,**文件共享方式适合在对数据同步要求不高的进程之间进行通信,并且要妥善处理并发读/写的问题**。
当然,**SharedPreferences是个特例**,众所周知,**SharedPreferences是Android中提供的轻量级存储方案,它通过键值对的方式来存储数据,在底层实现上它采用XML文件来存储键值对,每个应用的SharedPreferences文件都可以在当前包所在的data目录下查看到**。一般来说,它的目录位于/data/data/package name/shared_prefs目录下,其中package name表示的是当前应用的包名。
**从本质上来说,SharedPreferences也属于文件的一种,但是由于系统对它的读/写有一定的缓存策略,即在内存中会有一份SharedPreferences文件的缓存,因此在多进程模式下,系统对它的读/写就变得不可靠,当面对高并发的读/写访问,Sharedpreferences有很大几率会丢失数据**,因此,**不建议在进程间通信中使用SharedPreferences**。
- 前言
- 第1章 Activity的生命周期和启动模式
- 1.1 Activity的生命周期全面分析
- 1.1.1 典型情况下的生命周期分析
- 1.1.2 异常情况下的生命周期分析
- 1.2 Activity的启动模式
- 1.2.1 Activity的LaunchMode
- 1.2.2 Activity的Flags
- 1.3 IntentFilter的匹配规则
- 第2章 IPC机制
- 2.1 Android IPC简介
- 2.2 Android中的多进程模式
- 2.2.1 开启多进程模式
- 2.2.2 多进程模式的运行机制
- 2.3 IPC基础概念介绍
- 2.3.1 Serializable接口
- 2.3.2 Parcelable接口
- 2.3.3 Binder
- 2.4 Android中的IPC方式
- 2.4.1 使用Bundle
- 2.4.2 使用文件共享
- 2.4.3 使用Messenger
- 2.4.4 使用AIDL
- 2.4.5 使用ContentProvider
- 2.4.6 使用Socket
- 2.5 Binder连接池
- 2.6 选用合适的IPC方式
- 第3章 View的事件体系
- 3.1 View基础知识
- 3.1.1 什么是View
- 3.1.2 View的位置参数
- 3.1.3 MotionEvent和TouchSlop
- 3.1.4 VelocityTracker、GestureDetector和Scroller
- 3.2 View的滑动
- 3.2.1 使用scrollTo/scrollBy
- 3.2.2 使用动画
- 3.2.3 改变布局参数
- 3.2.4 各种滑动方式的对比
- 3.3 弹性滑动
- 3.3.1 使用Scroller7
- 3.3.2 通过动画
- 3.3.3 使用延时策略
- 3.4 View的事件分发机制
- 3.4.1 点击事件的传递规则
- 3.4.2 事件分发的源码解析
- 3.5 View的滑动冲突
- 3.5.1 常见的滑动冲突场景
- 3.5.2 滑动冲突的处理规则
- 3.5.3 滑动冲突的解决方式
- 第4章 View的工作原理
- 4.1 初识ViewRoot和DecorView
- 4.2 理解MeasureSpec
- 4.2.1 MeasureSpec
- 4.2.2 MeasureSpec和LayoutParams的对应关系
- 4.3 View的工作流程
- 4.3.1 measure过程
- 4.3.2 layout过程
- 4.3.3 draw过程
- 4.4 自定义View
- 4.4.1 自定义View的分类
- 4.4.2 自定义View须知
- 4.4.3 自定义View示例
- 4.4.4 自定义View的思想
- 第5章 理解RemoteViews
- 5.1 RemoteViews的应用
- 5.1.1 RemoteViews在通知栏上的应用
- 5.1.2 RemoteViews在桌面小部件上的应用
- 5.1.3 PendingIntent概述
- 5.2 RemoteViews的内部机制
- 5.3 RemoteViews的意义
- 第6章 Android的Drawable
- 6.1 Drawable简介
- 6.2 Drawable的分类
- 6.2.1 BitmapDrawable2
- 6.2.2 ShapeDrawable
- 6.2.3 LayerDrawable
- 6.2.4 StateListDrawable
- 6.2.5 LevelListDrawable
- 6.2.6 TransitionDrawable
- 6.2.7 InsetDrawable
- 6.2.8 ScaleDrawable
- 6.2.9 ClipDrawable
- 6.3 自定义Drawable
- 第7章 Android动画深入分析
- 7.1 View动画
- 7.1.1 View动画的种类
- 7.1.2 自定义View动画
- 7.1.3 帧动画
- 7.2 View动画的特殊使用场景
- 7.2.1 LayoutAnimation
- 7.2.2 Activity的切换效果
- 7.3 属性动画
- 7.3.1 使用属性动画
- 7.3.2 理解插值器和估值器 /
- 7.3.3 属性动画的监听器
- 7.3.4 对任意属性做动画
- 7.3.5 属性动画的工作原理
- 7.4 使用动画的注意事项
- 第8章 理解Window和WindowManager
- 8.1 Window和WindowManager
- 8.2 Window的内部机制
- 8.2.1 Window的添加过程
- 8.2.2 Window的删除过程
- 8.2.3 Window的更新过程
- 8.3 Window的创建过程
- 8.3.1 Activity的Window创建过程
- 8.3.2 Dialog的Window创建过程
- 8.3.3 Toast的Window创建过程
- 第9章 四大组件的工作过程
- 9.1 四大组件的运行状态
- 9.2 Activity的工作过程
- 9.3 Service的工作过程
- 9.3.1 Service的启动过程
- 9.3.2 Service的绑定过程
- 9.4 BroadcastReceiver的工作过程
- 9.4.1 广播的注册过程
- 9.4.2 广播的发送和接收过程
- 9.5 ContentProvider的工作过程
- 第10章 Android的消息机制
- 10.1 Android的消息机制概述
- 10.2 Android的消息机制分析
- 10.2.1 ThreadLocal的工作原理
- 10.2.2 消息队列的工作原理
- 10.2.3 Looper的工作原理
- 10.2.4 Handler的工作原理
- 10.3 主线程的消息循环
- 第11章 Android的线程和线程池
- 11.1 主线程和子线程
- 11.2 Android中的线程形态
- 11.2.1 AsyncTask
- 11.2.2 AsyncTask的工作原理
- 11.2.3 HandlerThread
- 11.2.4 IntentService
- 11.3 Android中的线程池
- 11.3.1 ThreadPoolExecutor
- 11.3.2 线程池的分类
- 第12章 Bitmap的加载和Cache
- 12.1 Bitmap的高效加载
- 12.2 Android中的缓存策略
- 12.2.1 LruCache
- 12.2.2 DiskLruCache
- 12.2.3 ImageLoader的实现446
- 12.3 ImageLoader的使用
- 12.3.1 照片墙效果
- 12.3.2 优化列表的卡顿现象
- 第13章 综合技术
- 13.1 使用CrashHandler来获取应用的crash信息
- 13.2 使用multidex来解决方法数越界
- 13.3 Android的动态加载技术
- 13.4 反编译初步
- 13.4.1 使用dex2jar和jd-gui反编译apk
- 13.4.2 使用apktool对apk进行二次打包
- 第14章 JNI和NDK编程
- 14.1 JNI的开发流程
- 14.2 NDK的开发流程
- 14.3 JNI的数据类型和类型签名
- 14.4 JNI调用Java方法的流程
- 第15章 Android性能优化
- 15.1 Android的性能优化方法
- 15.1.1 布局优化
- 15.1.2 绘制优化
- 15.1.3 内存泄露优化
- 15.1.4 响应速度优化和ANR日志分析
- 15.1.5 ListView和Bitmap优化
- 15.1.6 线程优化
- 15.1.7 一些性能优化建议
- 15.2 内存泄露分析之MAT工具
- 15.3 提高程序的可维护性