#### 8.3.3 Toast的Window创建过程
Toast和Dialog不同,它的工作过程就稍显复杂。首先Toast也是基于Window来实现的,但是由于Toast具有定时取消这一功能,所以系统采用了Handler。在Toast的内部有两类IPC过程,第一类是Toast访问NotificationManagerService,第二类是Notification-ManagerService回调Toast里的TN接口。关于IPC的一些知识,请读者参考第2章的相关内容。为了便于描述,下面将NotificationManagerService简称为NMS。
Toast属于系统Window,它内部的视图由两种方式指定,一种是系统默认的样式,另一种是通过setView方法来指定一个自定义View,不管如何,它们都对应Toast的一个View类型的内部成员mNextView。Toast提供了show和cancel分别用于显示和隐藏Toast,它们的内部是一个IPC过程,show方法和cancel方法的实现如下:
public void show() {
if (mNextView == null) {
throw new RuntimeException("setView must have been called");
}
INotificationManager service = getService();
String pkg = mContext.getOpPackageName();
TN tn = mTN;
tn.mNextView = mNextView;
try {
service.enqueueToast(pkg, tn, mDuration);
} catch (RemoteException e) {
// Empty
}
}
public void cancel() {
mTN.hide();
try {
getService().cancelToast(mContext.getPackageName(), mTN);
} catch (RemoteException e) {
// Empty
}
}
从上面的代码可以看到,显示和隐藏Toast都需要通过NMS来实现,由于NMS运行在系统的进程中,所以只能通过远程调用的方式来显示和隐藏Toast。需要注意的是TN这个类,它是一个Binder类,在Toast和NMS进行IPC的过程中,当NMS处理Toast的显示或隐藏请求时会跨进程回调TN中的方法,这个时候由于TN运行在Binder线程池中,所以需要通过Handler将其切换到当前线程中。这里的当前线程是指发送Toast请求所在的线程。注意,由于这里使用了Handler,所以这意味着Toast无法在没有Looper的线程中弹出,这是因为Handler需要使用Looper才能完成切换线程的功能,关于Handler和Looper的具体介绍请参看第10章。
首先看Toast的显示过程,它调用了NMS中的enqueueToast方法,如下所示。
INotificationManager service = getService();
String pkg = mContext.getOpPackageName();
TN tn = mTN;
tn.mNextView = mNextView;
try {
service.enqueueToast(pkg, tn, mDuration);
} catch (RemoteException e) {
// Empty
}
NMS的enqueueToast方法的第一个参数表示当前应用的包名,第二个参数tn表示远程回调,第三个参数表示Toast的时长。enqueueToast首先将Toast请求封装为ToastRecord对象并将其添加到一个名为mToastQueue的队列中。mToastQueue其实是一个ArrayList。对于非系统应用来说,mToastQueue中最多能同时存在50个ToastRecord,这样做是为了防止DOS(Denial of Service)。如果不这么做,试想一下,如果我们通过大量的循环去连续弹出Toast,这将会导致其他应用没有机会弹出Toast,那么对于其他应用的Toast请求,系统的行为就是拒绝服务,这就是拒绝服务攻击的含义,这种手段常用于网络攻击中。
// Limit the number of toasts that any given package except the android
// package can enqueue. Prevents DOS attacks and deals with leaks.
if (! isSystemToast) {
int count = 0;
final int N = mToastQueue.size();
for (int i=0; i<N; i++) {
final ToastRecord r = mToastQueue.get(i);
if (r.pkg.equals(pkg)) {
count++;
if (count >= MAX_PACKAGE_NOTIFICATIONS) {
Slog.e(TAG, "Package has already posted " + count
+ " toasts. Not showing more. Package=" + pkg);
return;
}
}
}
}
正常情况下,一个应用不可能达到上限,当ToastRecord被添加到mToastQueue中后,NMS就会通过showNextToastLocked方法来显示当前的Toast。下面的代码很好理解,需要注意的是,Toast的显示是由ToastRecord的callback来完成的,这个callback实际上就是Toast中的TN对象的远程Binder,通过callback来访问TN中的方法是需要跨进程来完成的,最终被调用的TN中的方法会运行在发起Toast请求的应用的Binder线程池中。
void showNextToastLocked() {
ToastRecord record = mToastQueue.get(0);
while (record ! = null) {
if (DBG) Slog.d(TAG, "Show pkg=" + record.pkg + " callback=" + record.
callback);
try {
record.callback.show();
scheduleTimeoutLocked(record);
return;
} catch (RemoteException e) {
Slog.w(TAG, "Object died trying to show notification " + record.
callback
+ " in package " + record.pkg);
// remove it from the list and let the process die
int index = mToastQueue.indexOf(record);
if (index >= 0) {
mToastQueue.remove(index);
}
keepProcessAliveLocked(record.pid);
if (mToastQueue.size() > 0) {
record = mToastQueue.get(0);
} else {
record = null;
}
}
}
}
Toast显示以后,NMS还会通过scheduleTimeoutLocked方法来发送一个延时消息,具体的延时取决于Toast的时长,如下所示。
private void scheduleTimeoutLocked(ToastRecord r)
{
mHandler.removeCallbacksAndMessages(r);
Message m = Message.obtain(mHandler, MESSAGE_TIMEOUT, r);
long delay = r.duration == Toast.LENGTH_LONG ? LONG_DELAY : SHORT_DELAY;
mHandler.sendMessageDelayed(m, delay);
}
在上面的代码中,LONG_DELAY是3.5s,而SHORT_DELAY是2s。延迟相应的时间后,NMS会通过cancelToastLocked方法来隐藏Toast并将其从mToastQueue中移除,这个时候如果mToastQueue中还有其他Toast,那么NMS就继续显示其他Toast。
Toast的隐藏也是通过ToastRecord的callback来完成的,这同样也是一次IPC过程,它的工作方式和Toast的显示过程是类似的,如下所示。
try {
record.callback.hide();
} catch (RemoteException e) {
Slog.w(TAG, "Object died trying to hide notification " + record.callback
+ " in package " + record.pkg);
// don't worry about this, we're about to remove it from
// the list anyway
}
通过上面的分析,大家知道Toast的显示和影响过程实际上是通过Toast中的TN这个类来实现的,它有两个方法show和hide,分别对应Toast的显示和隐藏。由于这两个方法是被NMS以跨进程的方式调用的,因此它们运行在Binder线程池中。为了将执行环境切换到Toast请求所在的线程,在它们的内部使用了Handler,如下所示。
/**
* schedule handleShow into the right thread
*/
@Override
public void show() {
if (localLOGV) Log.v(TAG, "SHOW: " + this);
mHandler.post(mShow);
}
/**
* schedule handleHide into the right thread
*/
@Override
public void hide() {
if (localLOGV) Log.v(TAG, "HIDE: " + this);
mHandler.post(mHide);
}
上述代码中,mShow和mHide是两个Runnable,它们内部分别调用了handleShow和handleHide方法。由此可见,handleShow和handleHide才是真正完成显示和隐藏Toast的地方。TN的handleShow中会将Toast的视图添加到Window中,如下所示。
mWM = (WindowManager)context.getSystemService(Context.WINDOW_SERVICE);
mWM.addView(mView, mParams)
而NT的handleHide中会将Toast的视图从Window中移除,如下所示。
if (mView.getParent() ! = null) {
if (localLOGV) Log.v(TAG, "REMOVE! " + mView + " in " + this);
mWM.removeView(mView);
}
到这里Toast的Window的创建过程已经分析完了,相信读者对Toast的工作过程有了一个更加全面的理解了。除了上面已经提到的Activity、Dialog和Toast以外,PopupWindow、菜单以及状态栏等都是通过Window来实现的,这里就不一一介绍了,读者可以找自己感兴趣的内容来分析。
本章的意义在于让读者对Window有一个更加清晰的认识,同时能够深刻理解Window和View的依赖关系,这有助于理解其他更深层次的概念,比如SurfaceFlinger。通过本章读者应该知道,任何View都是附属在一个Window上面的,那么这里问一个问题:一个应用中到底有多少个Window呢?相信读者都已经清楚了。
- 前言
- 第1章 Activity的生命周期和启动模式
- 1.1 Activity的生命周期全面分析
- 1.1.1 典型情况下的生命周期分析
- 1.1.2 异常情况下的生命周期分析
- 1.2 Activity的启动模式
- 1.2.1 Activity的LaunchMode
- 1.2.2 Activity的Flags
- 1.3 IntentFilter的匹配规则
- 第2章 IPC机制
- 2.1 Android IPC简介
- 2.2 Android中的多进程模式
- 2.2.1 开启多进程模式
- 2.2.2 多进程模式的运行机制
- 2.3 IPC基础概念介绍
- 2.3.1 Serializable接口
- 2.3.2 Parcelable接口
- 2.3.3 Binder
- 2.4 Android中的IPC方式
- 2.4.1 使用Bundle
- 2.4.2 使用文件共享
- 2.4.3 使用Messenger
- 2.4.4 使用AIDL
- 2.4.5 使用ContentProvider
- 2.4.6 使用Socket
- 2.5 Binder连接池
- 2.6 选用合适的IPC方式
- 第3章 View的事件体系
- 3.1 View基础知识
- 3.1.1 什么是View
- 3.1.2 View的位置参数
- 3.1.3 MotionEvent和TouchSlop
- 3.1.4 VelocityTracker、GestureDetector和Scroller
- 3.2 View的滑动
- 3.2.1 使用scrollTo/scrollBy
- 3.2.2 使用动画
- 3.2.3 改变布局参数
- 3.2.4 各种滑动方式的对比
- 3.3 弹性滑动
- 3.3.1 使用Scroller7
- 3.3.2 通过动画
- 3.3.3 使用延时策略
- 3.4 View的事件分发机制
- 3.4.1 点击事件的传递规则
- 3.4.2 事件分发的源码解析
- 3.5 View的滑动冲突
- 3.5.1 常见的滑动冲突场景
- 3.5.2 滑动冲突的处理规则
- 3.5.3 滑动冲突的解决方式
- 第4章 View的工作原理
- 4.1 初识ViewRoot和DecorView
- 4.2 理解MeasureSpec
- 4.2.1 MeasureSpec
- 4.2.2 MeasureSpec和LayoutParams的对应关系
- 4.3 View的工作流程
- 4.3.1 measure过程
- 4.3.2 layout过程
- 4.3.3 draw过程
- 4.4 自定义View
- 4.4.1 自定义View的分类
- 4.4.2 自定义View须知
- 4.4.3 自定义View示例
- 4.4.4 自定义View的思想
- 第5章 理解RemoteViews
- 5.1 RemoteViews的应用
- 5.1.1 RemoteViews在通知栏上的应用
- 5.1.2 RemoteViews在桌面小部件上的应用
- 5.1.3 PendingIntent概述
- 5.2 RemoteViews的内部机制
- 5.3 RemoteViews的意义
- 第6章 Android的Drawable
- 6.1 Drawable简介
- 6.2 Drawable的分类
- 6.2.1 BitmapDrawable2
- 6.2.2 ShapeDrawable
- 6.2.3 LayerDrawable
- 6.2.4 StateListDrawable
- 6.2.5 LevelListDrawable
- 6.2.6 TransitionDrawable
- 6.2.7 InsetDrawable
- 6.2.8 ScaleDrawable
- 6.2.9 ClipDrawable
- 6.3 自定义Drawable
- 第7章 Android动画深入分析
- 7.1 View动画
- 7.1.1 View动画的种类
- 7.1.2 自定义View动画
- 7.1.3 帧动画
- 7.2 View动画的特殊使用场景
- 7.2.1 LayoutAnimation
- 7.2.2 Activity的切换效果
- 7.3 属性动画
- 7.3.1 使用属性动画
- 7.3.2 理解插值器和估值器 /
- 7.3.3 属性动画的监听器
- 7.3.4 对任意属性做动画
- 7.3.5 属性动画的工作原理
- 7.4 使用动画的注意事项
- 第8章 理解Window和WindowManager
- 8.1 Window和WindowManager
- 8.2 Window的内部机制
- 8.2.1 Window的添加过程
- 8.2.2 Window的删除过程
- 8.2.3 Window的更新过程
- 8.3 Window的创建过程
- 8.3.1 Activity的Window创建过程
- 8.3.2 Dialog的Window创建过程
- 8.3.3 Toast的Window创建过程
- 第9章 四大组件的工作过程
- 9.1 四大组件的运行状态
- 9.2 Activity的工作过程
- 9.3 Service的工作过程
- 9.3.1 Service的启动过程
- 9.3.2 Service的绑定过程
- 9.4 BroadcastReceiver的工作过程
- 9.4.1 广播的注册过程
- 9.4.2 广播的发送和接收过程
- 9.5 ContentProvider的工作过程
- 第10章 Android的消息机制
- 10.1 Android的消息机制概述
- 10.2 Android的消息机制分析
- 10.2.1 ThreadLocal的工作原理
- 10.2.2 消息队列的工作原理
- 10.2.3 Looper的工作原理
- 10.2.4 Handler的工作原理
- 10.3 主线程的消息循环
- 第11章 Android的线程和线程池
- 11.1 主线程和子线程
- 11.2 Android中的线程形态
- 11.2.1 AsyncTask
- 11.2.2 AsyncTask的工作原理
- 11.2.3 HandlerThread
- 11.2.4 IntentService
- 11.3 Android中的线程池
- 11.3.1 ThreadPoolExecutor
- 11.3.2 线程池的分类
- 第12章 Bitmap的加载和Cache
- 12.1 Bitmap的高效加载
- 12.2 Android中的缓存策略
- 12.2.1 LruCache
- 12.2.2 DiskLruCache
- 12.2.3 ImageLoader的实现446
- 12.3 ImageLoader的使用
- 12.3.1 照片墙效果
- 12.3.2 优化列表的卡顿现象
- 第13章 综合技术
- 13.1 使用CrashHandler来获取应用的crash信息
- 13.2 使用multidex来解决方法数越界
- 13.3 Android的动态加载技术
- 13.4 反编译初步
- 13.4.1 使用dex2jar和jd-gui反编译apk
- 13.4.2 使用apktool对apk进行二次打包
- 第14章 JNI和NDK编程
- 14.1 JNI的开发流程
- 14.2 NDK的开发流程
- 14.3 JNI的数据类型和类型签名
- 14.4 JNI调用Java方法的流程
- 第15章 Android性能优化
- 15.1 Android的性能优化方法
- 15.1.1 布局优化
- 15.1.2 绘制优化
- 15.1.3 内存泄露优化
- 15.1.4 响应速度优化和ANR日志分析
- 15.1.5 ListView和Bitmap优化
- 15.1.6 线程优化
- 15.1.7 一些性能优化建议
- 15.2 内存泄露分析之MAT工具
- 15.3 提高程序的可维护性