# 1.4 用条件句控制编译
**NOTE**:*这个示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-01/recipe-04 找到,其中有一个C++示例。该配置在CMake 3.5版(或更高版本)测试有效的,并且已经在GNU/Linux、macOS和Windows上进行了测试。*
目前为止,看到的示例比较简单,CMake执行流是线性的:从一组源文件到单个可执行文件,也可以生成静态库或动态库。为了确保完全控制构建项目、配置、编译和链接所涉及的所有步骤的执行流,CMake提供了自己的语言。本节中,我们将探索条件结构`if-else- else-endif`的使用。
**NOTE**: *CMake语言相当庞杂,由基本的控制结构、特定于CMake的命令和使用新函数模块化扩展语言的基础设施组成。完整的概览可以在这里找到: https://cmake.org/cmake/help/latest/manual/cmake-language.7.html*
## 具体实施
从与上一个示例的的源代码开始,我们希望能够在不同的两种行为之间进行切换:
1. 将` Message.hpp`和`Message.cpp`构建成一个库(静态或动态),然后将生成库链接到`hello-world`可执行文件中。
2. 将`Message.hpp`,`Message.cpp`和`hello-world.cpp`构建成一个可执行文件,但不生成任何一个库。
让我们来看看如何使用`CMakeLists.txt`来实现:
1. 首先,定义最低CMake版本、项目名称和支持的语言:
```cmake
cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
project(recipe-04 LANGUAGES CXX)
```
2. 我们引入了一个新变量`USE_LIBRARY`,这是一个逻辑变量,值为`OFF`。我们还打印了它的值:
```cmake
set(USE_LIBRARY OFF)
message(STATUS "Compile sources into a library? ${USE_LIBRARY}")
```
3. CMake中定义`BUILD_SHARED_LIBS`全局变量,并设置为`OFF`。调用`add_library`并省略第二个参数,将构建一个静态库:
```cmake
set(BUILD_SHARED_LIBS OFF)
```
4. 然后,引入一个变量`_sources`,包括`Message.hpp`和`Message.cpp`:
```cmake
list(APPEND _sources Message.hpp Message.cpp)
```
5. 然后,引入一个基于`USE_LIBRARY`值的`if-else`语句。如果逻辑为真,则` Message.hpp`和`Message.cpp`将打包成一个库:
```cmake
if(USE_LIBRARY)
# add_library will create a static library
# since BUILD_SHARED_LIBS is OFF
add_library(message ${_sources})
add_executable(hello-world hello-world.cpp)
target_link_libraries(hello-world message)
else()
add_executable(hello-world hello-world.cpp ${_sources})
endif()
```
6. 我们可以再次使用相同的命令集进行构建。由于`USE_LIBRARY`为`OFF`, `hello-world`可执行文件将使用所有源文件来编译。可以通过在GNU/Linux上,运行`objdump -x`命令进行验证。
##工作原理
我们介绍了两个变量:`USE_LIBRARY`和`BUILD_SHARED_LIBS`。这两个变量都设置为`OFF`。如CMake语言文档中描述,逻辑真或假可以用多种方式表示:
* 如果将逻辑变量设置为以下任意一种:`1`、`ON`、`YES`、`true`、`Y`或非零数,则逻辑变量为`true`。
* 如果将逻辑变量设置为以下任意一种:`0`、`OFF`、`NO`、`false`、`N`、`IGNORE、NOTFOUND`、空字符串,或者以`-NOTFOUND`为后缀,则逻辑变量为`false`。
`USE_LIBRARY`变量将在第一个和第二个行为之间切换。`BUILD_SHARED_LIBS`是CMake的一个全局标志。因为CMake内部要查询`BUILD_SHARED_LIBS`全局变量,所以`add_library`命令可以在不传递`STATIC/SHARED/OBJECT`参数的情况下调用;如果为`false`或未定义,将生成一个静态库。
这个例子说明,可以引入条件来控制CMake中的执行流。但是,当前的设置不允许从外部切换,不需要手动修改`CMakeLists.txt`。原则上,我们希望能够向用户开放所有设置,这样就可以在不修改构建代码的情况下调整配置,稍后将展示如何做到这一点。
**NOTE**:*`else()`和`endif()`中的`()`,可能会让刚开始学习CMake代码的同学感到惊讶。其历史原因是,因为其能够指出指令的作用范围。例如,可以使用`if(USE_LIBRARY)…else(USE_LIBRARY)…endif(USE_LIBIRAY)`。这个格式并不唯一,可以根据个人喜好来决定使用哪种格式。*
**TIPS**:*`_sources`变量是一个局部变量,不应该在当前范围之外使用,可以在名称前加下划线。*
- Introduction
- 前言
- 第0章 配置环境
- 0.1 获取代码
- 0.2 Docker镜像
- 0.3 安装必要的软件
- 0.4 测试环境
- 0.5 上报问题并提出改进建议
- 第1章 从可执行文件到库
- 1.1 将单个源文件编译为可执行文件
- 1.2 切换生成器
- 1.3 构建和链接静态库和动态库
- 1.4 用条件句控制编译
- 1.5 向用户显示选项
- 1.6 指定编译器
- 1.7 切换构建类型
- 1.8 设置编译器选项
- 1.9 为语言设定标准
- 1.10 使用控制流
- 第2章 检测环境
- 2.1 检测操作系统
- 2.2 处理与平台相关的源代码
- 2.3 处理与编译器相关的源代码
- 2.4 检测处理器体系结构
- 2.5 检测处理器指令集
- 2.6 为Eigen库使能向量化
- 第3章 检测外部库和程序
- 3.1 检测Python解释器
- 3.2 检测Python库
- 3.3 检测Python模块和包
- 3.4 检测BLAS和LAPACK数学库
- 3.5 检测OpenMP的并行环境
- 3.6 检测MPI的并行环境
- 3.7 检测Eigen库
- 3.8 检测Boost库
- 3.9 检测外部库:Ⅰ. 使用pkg-config
- 3.10 检测外部库:Ⅱ. 自定义find模块
- 第4章 创建和运行测试
- 4.1 创建一个简单的单元测试
- 4.2 使用Catch2库进行单元测试
- 4.3 使用Google Test库进行单元测试
- 4.4 使用Boost Test进行单元测试
- 4.5 使用动态分析来检测内存缺陷
- 4.6 预期测试失败
- 4.7 使用超时测试运行时间过长的测试
- 4.8 并行测试
- 4.9 运行测试子集
- 4.10 使用测试固件
- 第5章 配置时和构建时的操作
- 5.1 使用平台无关的文件操作
- 5.2 配置时运行自定义命令
- 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
- 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
- 5.5 构建时为特定目标运行自定义命令
- 5.6 探究编译和链接命令
- 5.7 探究编译器标志命令
- 5.8 探究可执行命令
- 5.9 使用生成器表达式微调配置和编译
- 第6章 生成源码
- 6.1 配置时生成源码
- 6.2 使用Python在配置时生成源码
- 6.3 构建时使用Python生成源码
- 6.4 记录项目版本信息以便报告
- 6.5 从文件中记录项目版本
- 6.6 配置时记录Git Hash值
- 6.7 构建时记录Git Hash值
- 第7章 构建项目
- 7.1 使用函数和宏重用代码
- 7.2 将CMake源代码分成模块
- 7.3 编写函数来测试和设置编译器标志
- 7.4 用指定参数定义函数或宏
- 7.5 重新定义函数和宏
- 7.6 使用废弃函数、宏和变量
- 7.7 add_subdirectory的限定范围
- 7.8 使用target_sources避免全局变量
- 7.9 组织Fortran项目
- 第8章 超级构建模式
- 8.1 使用超级构建模式
- 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
- 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
- 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
- 8.5 使用超级构建支持项目
- 第9章 语言混合项目
- 9.1 使用C/C++库构建Fortran项目
- 9.2 使用Fortran库构建C/C++项目
- 9.3 使用Cython构建C++和Python项目
- 9.4 使用Boost.Python构建C++和Python项目
- 9.5 使用pybind11构建C++和Python项目
- 9.6 使用Python CFFI混合C,C++,Fortran和Python
- 第10章 编写安装程序
- 10.1 安装项目
- 10.2 生成输出头文件
- 10.3 输出目标
- 10.4 安装超级构建
- 第11章 打包项目
- 11.1 生成源代码和二进制包
- 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
- 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
- 11.4 以Conda包的形式发布一个简单的项目
- 11.5 将Conda包作为依赖项发布给项目
- 第12章 构建文档
- 12.1 使用Doxygen构建文档
- 12.2 使用Sphinx构建文档
- 12.3 结合Doxygen和Sphinx
- 第13章 选择生成器和交叉编译
- 13.1 使用CMake构建Visual Studio 2017项目
- 13.2 交叉编译hello world示例
- 13.3 使用OpenMP并行化交叉编译Windows二进制文件
- 第14章 测试面板
- 14.1 将测试部署到CDash
- 14.2 CDash显示测试覆盖率
- 14.3 使用AddressSanifier向CDash报告内存缺陷
- 14.4 使用ThreadSaniiser向CDash报告数据争用
- 第15章 使用CMake构建已有项目
- 15.1 如何开始迁移项目
- 15.2 生成文件并编写平台检查
- 15.3 检测所需的链接和依赖关系
- 15.4 复制编译标志
- 15.5 移植测试
- 15.6 移植安装目标
- 15.7 进一步迁移的措施
- 15.8 项目转换为CMake的常见问题
- 第16章 可能感兴趣的书
- 16.1 留下评论——让其他读者知道你的想法