# 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
**NOTE**:*此示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-5/recipe-03 中找到,其中包含一个C++例子。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。*
项目的构建目标取决于命令的结果,这些命令只能在构建系统生成完成后的构建执行。CMake提供了三个选项来在构建时执行自定义命令:
1. 使用`add_custom_command`编译目标,生成输出文件。
2. `add_custom_target`的执行没有输出。
3. 构建目标前后,`add_custom_command`的执行可以没有输出。
这三个选项强制执行特定的语义,并且不可互换。接下来的三个示例将演示具体的用法。
## 准备工作
我们将重用第3章第4节中的C++示例,以说明如何使用`add_custom_command`的第一个选项。代码示例中,我们了解了现有的BLAS和LAPACK库,并编译了一个很小的C++包装器库,以调用线性代数的Fortran实现。
我们将把代码分成两部分。` linear-algebra.cpp `的源文件与第3章、第4章没有区别,并且将包含线性代数包装器库的头文件和针对编译库的链接。源代码将打包到一个压缩的tar存档文件中,该存档文件随示例项目一起提供。存档文件将在构建时提取,并在可执行文件生成之前,编译线性代数的包装器库。
## 具体实施
`CMakeLists.txt`必须包含一个自定义命令,来提取线性代数包装器库的源代码:
1. 从CMake最低版本、项目名称和支持语言的定义开始:
```cmake
cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
project(recipe-03 LANGUAGES CXX Fortran)
```
2. 选择C++11标准:
```cmake
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
```
3. 然后,在系统上查找BLAS和LAPACK库:
```cmake
find_package(BLAS REQUIRED)
find_package(LAPACK REQUIRED)
```
4. 声明一个变量`wrap_BLAS_LAPACK_sources`来保存`wrap_BLAS_LAPACK.tar.gz`压缩包文件的名称:
```cmake
set(wrap_BLAS_LAPACK_sources
${CMAKE_CURRENT_BINARY_DIR}/wrap_BLAS_LAPACK/CxxBLAS.hpp
${CMAKE_CURRENT_BINARY_DIR}/wrap_BLAS_LAPACK/CxxBLAS.cpp
${CMAKE_CURRENT_BINARY_DIR}/wrap_BLAS_LAPACK/CxxLAPACK.hpp
${CMAKE_CURRENT_BINARY_DIR}/wrap_BLAS_LAPACK/CxxLAPACK.cpp
)
```
5. 声明自定义命令来提取`wrap_BLAS_LAPACK.tar.gz`压缩包,并更新提取文件的时间戳。注意这个`wrap_BLAS_LAPACK_sources`变量的预期输出:
```cmake
add_custom_command(
OUTPUT
${wrap_BLAS_LAPACK_sources}
COMMAND
${CMAKE_COMMAND} -E tar xzf ${CMAKE_CURRENT_SOURCE_DIR}/wrap_BLAS_LAPACK.tar.gz
COMMAND
${CMAKE_COMMAND} -E touch ${wrap_BLAS_LAPACK_sources}
WORKING_DIRECTORY
${CMAKE_CURRENT_BINARY_DIR}
DEPENDS
${CMAKE_CURRENT_SOURCE_DIR}/wrap_BLAS_LAPACK.tar.gz
COMMENT
"Unpacking C++ wrappers for BLAS/LAPACK"
VERBATIM
)
```
6. 接下来,添加一个库目标,源文件是新解压出来的:
```cmake
add_library(math "")
target_sources(math
PRIVATE
${CMAKE_CURRENT_BINARY_DIR}/wrap_BLAS_LAPACK/CxxBLAS.cpp
${CMAKE_CURRENT_BINARY_DIR}/wrap_BLAS_LAPACK/CxxLAPACK.cpp
PUBLIC
${CMAKE_CURRENT_BINARY_DIR}/wrap_BLAS_LAPACK/CxxBLAS.hpp
${CMAKE_CURRENT_BINARY_DIR}/wrap_BLAS_LAPACK/CxxLAPACK.hpp
)
target_include_directories(math
INTERFACE
${CMAKE_CURRENT_BINARY_DIR}/wrap_BLAS_LAPACK
)
target_link_libraries(math
PUBLIC
${LAPACK_LIBRARIES}
)
```
7. 最后,添加`linear-algebra`可执行目标。可执行目标链接到库:
```cmake
add_executable(linear-algebra linear-algebra.cpp)
target_link_libraries(linear-algebra
PRIVATE
math
)
```
8. 我们配置、构建和执行示例:
```shell
$ mkdir -p build
$ cd build
$ cmake ..
$ cmake --build .
$ ./linear-algebra 1000
C_DSCAL done
C_DGESV done
info is 0
check is 4.35597e-10
```
## 工作原理
让我们来了解一下`add_custom_command`的使用:
```cmake
add_custom_command(
OUTPUT
${wrap_BLAS_LAPACK_sources}
COMMAND
${CMAKE_COMMAND} -E tar xzf ${CMAKE_CURRENT_SOURCE_DIR}/wrap_BLAS_LAPACK.tar.gz
COMMAND
${CMAKE_COMMAND} -E touch ${wrap_BLAS_LAPACK_sources}
WORKING_DIRECTORY
${CMAKE_CURRENT_BINARY_DIR}
DEPENDS
${CMAKE_CURRENT_SOURCE_DIR}/wrap_BLAS_LAPACK.tar.gz
COMMENT
"Unpacking C++ wrappers for BLAS/LAPACK"
VERBATIM
)
```
`add_custom_command`向目标添加规则,并通过执行命令生成输出。`add_custom_command`中声明的任何目标,即在相同的`CMakeLists.txt`中声明的任何目标,使用输出的任何文件作为源文件的目标,在构建时会有规则生成这些文件。因此,源文件生成在构建时,目标和自定义命令在构建系统生成时,将自动处理依赖关系。
我们的例子中,输出是压缩`tar`包,其中包含有源文件。要检测和使用这些文件,必须在构建时提取打包文件。通过使用带有`-E`标志的CMake命令,以实现平台独立性。下一个命令会更新提取文件的时间戳。这样做是为了确保没有处理陈旧文件。`WORKING_DIRECTORY`可以指定在何处执行命令。示例中,`CMAKE_CURRENT_BINARY_DIR`是当前正在处理的构建目录。`DEPENDS`参数列出了自定义命令的依赖项。例子中,压缩的`tar`是一个依赖项。CMake使用`COMMENT`字段在构建时打印状态消息。最后,`VERBATIM`告诉CMake为生成器和平台生成正确的命令,从而确保完全独立。
我们来仔细看看这用使用方式和打包库的创建:
```cmake
add_library(math "")
target_sources(math
PRIVATE
${CMAKE_CURRENT_BINARY_DIR}/wrap_BLAS_LAPACK/CxxBLAS.cpp
${CMAKE_CURRENT_BINARY_DIR}/wrap_BLAS_LAPACK/CxxLAPACK.cpp
PUBLIC
${CMAKE_CURRENT_BINARY_DIR}/wrap_BLAS_LAPACK/CxxBLAS.hpp
${CMAKE_CURRENT_BINARY_DIR}/wrap_BLAS_LAPACK/CxxLAPACK.hpp
)
target_include_directories(math
INTERFACE
${CMAKE_CURRENT_BINARY_DIR}/wrap_BLAS_LAPACK
)
target_link_libraries(math
PUBLIC
${LAPACK_LIBRARIES}
)
```
我们声明一个没有源的库目标,是因为后续使用`target_sources`填充目标的源。这里实现了一个非常重要的目标,即让依赖于此目标的目标,了解需要哪些目录和头文件,以便成功地使用库。C++源文件的目标是`PRIVATE`,因此只用于构建库。因为目标及其依赖项都需要使用它们来成功编译,所以头文件是`PUBLIC`。包含目录使用`target_include_categories`指定,其中`wrap_BLAS_LAPACK`声明为`INTERFACE`,因为只有依赖于`math`目标的目标需要它。
`add_custom_command`有两个限制:
* 只有在相同的`CMakeLists.txt`中,指定了所有依赖于其输出的目标时才有效。
* 对于不同的独立目标,使用`add_custom_command`的输出可以重新执行定制命令。这可能会导致冲突,应该避免这种情况的发生。
第二个限制,可以使用`add_dependencies`来避免。不过,规避这两个限制的正确方法是使用`add_custom_target`命令,我们将在下一节的示例中详细介绍。
- Introduction
- 前言
- 第0章 配置环境
- 0.1 获取代码
- 0.2 Docker镜像
- 0.3 安装必要的软件
- 0.4 测试环境
- 0.5 上报问题并提出改进建议
- 第1章 从可执行文件到库
- 1.1 将单个源文件编译为可执行文件
- 1.2 切换生成器
- 1.3 构建和链接静态库和动态库
- 1.4 用条件句控制编译
- 1.5 向用户显示选项
- 1.6 指定编译器
- 1.7 切换构建类型
- 1.8 设置编译器选项
- 1.9 为语言设定标准
- 1.10 使用控制流
- 第2章 检测环境
- 2.1 检测操作系统
- 2.2 处理与平台相关的源代码
- 2.3 处理与编译器相关的源代码
- 2.4 检测处理器体系结构
- 2.5 检测处理器指令集
- 2.6 为Eigen库使能向量化
- 第3章 检测外部库和程序
- 3.1 检测Python解释器
- 3.2 检测Python库
- 3.3 检测Python模块和包
- 3.4 检测BLAS和LAPACK数学库
- 3.5 检测OpenMP的并行环境
- 3.6 检测MPI的并行环境
- 3.7 检测Eigen库
- 3.8 检测Boost库
- 3.9 检测外部库:Ⅰ. 使用pkg-config
- 3.10 检测外部库:Ⅱ. 自定义find模块
- 第4章 创建和运行测试
- 4.1 创建一个简单的单元测试
- 4.2 使用Catch2库进行单元测试
- 4.3 使用Google Test库进行单元测试
- 4.4 使用Boost Test进行单元测试
- 4.5 使用动态分析来检测内存缺陷
- 4.6 预期测试失败
- 4.7 使用超时测试运行时间过长的测试
- 4.8 并行测试
- 4.9 运行测试子集
- 4.10 使用测试固件
- 第5章 配置时和构建时的操作
- 5.1 使用平台无关的文件操作
- 5.2 配置时运行自定义命令
- 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
- 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
- 5.5 构建时为特定目标运行自定义命令
- 5.6 探究编译和链接命令
- 5.7 探究编译器标志命令
- 5.8 探究可执行命令
- 5.9 使用生成器表达式微调配置和编译
- 第6章 生成源码
- 6.1 配置时生成源码
- 6.2 使用Python在配置时生成源码
- 6.3 构建时使用Python生成源码
- 6.4 记录项目版本信息以便报告
- 6.5 从文件中记录项目版本
- 6.6 配置时记录Git Hash值
- 6.7 构建时记录Git Hash值
- 第7章 构建项目
- 7.1 使用函数和宏重用代码
- 7.2 将CMake源代码分成模块
- 7.3 编写函数来测试和设置编译器标志
- 7.4 用指定参数定义函数或宏
- 7.5 重新定义函数和宏
- 7.6 使用废弃函数、宏和变量
- 7.7 add_subdirectory的限定范围
- 7.8 使用target_sources避免全局变量
- 7.9 组织Fortran项目
- 第8章 超级构建模式
- 8.1 使用超级构建模式
- 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
- 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
- 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
- 8.5 使用超级构建支持项目
- 第9章 语言混合项目
- 9.1 使用C/C++库构建Fortran项目
- 9.2 使用Fortran库构建C/C++项目
- 9.3 使用Cython构建C++和Python项目
- 9.4 使用Boost.Python构建C++和Python项目
- 9.5 使用pybind11构建C++和Python项目
- 9.6 使用Python CFFI混合C,C++,Fortran和Python
- 第10章 编写安装程序
- 10.1 安装项目
- 10.2 生成输出头文件
- 10.3 输出目标
- 10.4 安装超级构建
- 第11章 打包项目
- 11.1 生成源代码和二进制包
- 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
- 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
- 11.4 以Conda包的形式发布一个简单的项目
- 11.5 将Conda包作为依赖项发布给项目
- 第12章 构建文档
- 12.1 使用Doxygen构建文档
- 12.2 使用Sphinx构建文档
- 12.3 结合Doxygen和Sphinx
- 第13章 选择生成器和交叉编译
- 13.1 使用CMake构建Visual Studio 2017项目
- 13.2 交叉编译hello world示例
- 13.3 使用OpenMP并行化交叉编译Windows二进制文件
- 第14章 测试面板
- 14.1 将测试部署到CDash
- 14.2 CDash显示测试覆盖率
- 14.3 使用AddressSanifier向CDash报告内存缺陷
- 14.4 使用ThreadSaniiser向CDash报告数据争用
- 第15章 使用CMake构建已有项目
- 15.1 如何开始迁移项目
- 15.2 生成文件并编写平台检查
- 15.3 检测所需的链接和依赖关系
- 15.4 复制编译标志
- 15.5 移植测试
- 15.6 移植安装目标
- 15.7 进一步迁移的措施
- 15.8 项目转换为CMake的常见问题
- 第16章 可能感兴趣的书
- 16.1 留下评论——让其他读者知道你的想法