# 6.1 配置时生成源码
**NOTE**:*此示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-6/recipe-01 中找到,其中包含一个Fortran/C例子。该示例在CMake 3.10版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows(使用MSYS Makefiles)上进行过测试。*
代码生成在配置时发生,例如:CMake可以检测操作系统和可用库;基于这些信息,我们可以定制构建的源代码。本节和下面的章节中,我们将演示如何生成一个简单源文件,该文件定义了一个函数,用于报告构建系统配置。
## 准备工作
此示例的代码使用Fortran和C语言编写,第9章将讨论混合语言编程。主程序是一个简单的Fortran可执行程序,它调用一个C函数`print_info()`,该函数将打印配置信息。值得注意的是,在使用Fortran 2003时,编译器将处理命名问题(对于C函数的接口声明),如示例所示。我们将使用的`example.f90`作为源文件:
```fortran
program hello_world
implicit none
interface
subroutine print_info() bind(c, name="print_info")
end subroutine
end interface
call print_info()
end program
```
C函数`print_info()`在模板文件`print_info.c.in`中定义。在配置时,以`@`开头和结尾的变量将被替换为实际值:
```c++
#include <stdio.h>
#include <unistd.h>
void print_info(void)
{
printf("\n");
printf("Configuration and build information\n");
printf("-----------------------------------\n");
printf("\n");
printf("Who compiled | %s\n", "@_user_name@");
printf("Compilation hostname | %s\n", "@_host_name@");
printf("Fully qualified domain name | %s\n", "@_fqdn@");
printf("Operating system | %s\n",
"@_os_name@, @_os_release@, @_os_version@");
printf("Platform | %s\n", "@_os_platform@");
printf("Processor info | %s\n",
"@_processor_name@, @_processor_description@");
printf("CMake version | %s\n", "@CMAKE_VERSION@");
printf("CMake generator | %s\n", "@CMAKE_GENERATOR@");
printf("Configuration time | %s\n", "@_configuration_time@");
printf("Fortran compiler | %s\n", "@CMAKE_Fortran_COMPILER@");
printf("C compiler | %s\n", "@CMAKE_C_COMPILER@");
printf("\n");
fflush(stdout);
}
```
## 具体实施
在CMakeLists.txt中,我们首先必须对选项进行配置,并用它们的值替换`print_info.c.in`中相应的占位符。然后,将Fortran和C源代码编译成一个可执行文件:
1. 声明了一个Fortran-C混合项目:
```cmake
cmake_minimum_required(VERSION 3.10 FATAL_ERROR)
project(recipe-01 LANGUAGES Fortran C)
```
2. 使用`execute_process`为项目获取当且使用者的信息:
```cmake
execute_process(
COMMAND
whoami
TIMEOUT
1
OUTPUT_VARIABLE
_user_name
OUTPUT_STRIP_TRAILING_WHITESPACE
)
```
3. 使用`cmake_host_system_information()`函数(已经在第2章第5节遇到过),可以查询很多系统信息:
```cmake
# host name information
cmake_host_system_information(RESULT _host_name QUERY HOSTNAME)
cmake_host_system_information(RESULT _fqdn QUERY FQDN)
# processor information
cmake_host_system_information(RESULT _processor_name QUERY PROCESSOR_NAME)
cmake_host_system_information(RESULT _processor_description QUERY PROCESSOR_DESCRIPTION)
# os information
cmake_host_system_information(RESULT _os_name QUERY OS_NAME)
cmake_host_system_information(RESULT _os_release QUERY OS_RELEASE)
cmake_host_system_information(RESULT _os_version QUERY OS_VERSION)
cmake_host_system_information(RESULT _os_platform QUERY OS_PLATFORM)
```
4. 捕获配置时的时间戳,并通过使用字符串操作函数:
```cmake
string(TIMESTAMP _configuration_time "%Y-%m-%d %H:%M:%S [UTC]" UTC)
```
5. 现在,准备好配置模板文件`print_info.c.in`。通过CMake的`configure_file`函数生成代码。注意,这里只要求以`@`开头和结尾的字符串被替换:
```cmake
configure_file(print_info.c.in print_info.c @ONLY)
```
6. 最后,我们添加一个可执行目标,并定义目标源:
```cmake
add_executable(example "")
target_sources(example
PRIVATE
example.f90
${CMAKE_CURRENT_BINARY_DIR}/print_info.c
)
```
7. 下面是一个输出示例:
```shell
$ mkdir -p build
$ cd build
$ cmake ..
$ cmake --build .
$ ./example
Configuration and build information
-----------------------------------
Who compiled | somebody
Compilation hostname | laptop
Fully qualified domain name | laptop
Operating system | Linux, 4.16.13-1-ARCH, #1 SMP PREEMPT Thu May 31 23:29:29 UTC 2018
Platform | x86_64
Processor info | Unknown P6 family, 2 core Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz
CMake version | 3.11.3
CMake generator | Unix Makefiles
Configuration time | 2018-06-25 15:38:03 [UTC]
Fortran compiler | /usr/bin/f95
C compiler | /usr/bin/cc
```
## 工作原理
`configure_file`命令可以复制文件,并用变量值替换它们的内容。示例中,使用`configure_file`修改模板文件的内容,并将其复制到一个位置,然后将其编译到可执行文件中。如何调用`configure_file`:
```cmake
configure_file(print_info.c.in print_info.c @ONLY)
```
第一个参数是模板的名称为` print_info.c.in `。CMake假设输入文件的目录,与项目的根目录相对;也就是说,在`${CMAKE_CURRENT_SOURCE_DIR}/print_info.c.in`。我们选择`print_info.c`,作为第二个参数是配置文件的名称。假设输出文件位于相对于项目构建目录的位置:`${CMAKE_CURRENT_BINARY_DIR}/print_info.c`。
输入和输出文件作为参数时,CMake不仅将配置`@VAR@`变量,还将配置`${VAR}`变量。如果`${VAR}`是语法的一部分,并且不应该修改(例如在shell脚本中),那么就很不方便。为了在引导CMake,应该将选项`@ONLY`传递给`configure_file`的调用,如前所述。
## 更多信息
注意,用值替换占位符时,CMake中的变量名应该与将要配置的文件中使用的变量名完全相同,并放在`@`之间。可以在调用`configure_file`时定义的任何CMake变量。我们的示例中,这包括所有内置的CMake变量,如`CMAKE_VERSION`或`CMAKE_GENERATOR`。此外,每当修改模板文件时,重新生成代码将触发生成系统的重新生成。这样,配置的文件将始终保持最新。
**TIPS**:*通过使用`CMake --help-variable-list`,可以从CMake手册中获得完整的内部CMake变量列表。*
**NOTE**:*`file(GENERATE…)`为提供了一个有趣的替代`configure_file`,这是因为`file`允许将生成器表达式作为配置文件的一部分进行计算。但是,每次运行CMake时,`file(GENERATE…)`都会更新输出文件,这将强制重新构建依赖于该输出的所有目标。详细可参见https://crascit.com/2017/04/18/generated-sources-in-cmake-build 。*
- Introduction
- 前言
- 第0章 配置环境
- 0.1 获取代码
- 0.2 Docker镜像
- 0.3 安装必要的软件
- 0.4 测试环境
- 0.5 上报问题并提出改进建议
- 第1章 从可执行文件到库
- 1.1 将单个源文件编译为可执行文件
- 1.2 切换生成器
- 1.3 构建和链接静态库和动态库
- 1.4 用条件句控制编译
- 1.5 向用户显示选项
- 1.6 指定编译器
- 1.7 切换构建类型
- 1.8 设置编译器选项
- 1.9 为语言设定标准
- 1.10 使用控制流
- 第2章 检测环境
- 2.1 检测操作系统
- 2.2 处理与平台相关的源代码
- 2.3 处理与编译器相关的源代码
- 2.4 检测处理器体系结构
- 2.5 检测处理器指令集
- 2.6 为Eigen库使能向量化
- 第3章 检测外部库和程序
- 3.1 检测Python解释器
- 3.2 检测Python库
- 3.3 检测Python模块和包
- 3.4 检测BLAS和LAPACK数学库
- 3.5 检测OpenMP的并行环境
- 3.6 检测MPI的并行环境
- 3.7 检测Eigen库
- 3.8 检测Boost库
- 3.9 检测外部库:Ⅰ. 使用pkg-config
- 3.10 检测外部库:Ⅱ. 自定义find模块
- 第4章 创建和运行测试
- 4.1 创建一个简单的单元测试
- 4.2 使用Catch2库进行单元测试
- 4.3 使用Google Test库进行单元测试
- 4.4 使用Boost Test进行单元测试
- 4.5 使用动态分析来检测内存缺陷
- 4.6 预期测试失败
- 4.7 使用超时测试运行时间过长的测试
- 4.8 并行测试
- 4.9 运行测试子集
- 4.10 使用测试固件
- 第5章 配置时和构建时的操作
- 5.1 使用平台无关的文件操作
- 5.2 配置时运行自定义命令
- 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
- 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
- 5.5 构建时为特定目标运行自定义命令
- 5.6 探究编译和链接命令
- 5.7 探究编译器标志命令
- 5.8 探究可执行命令
- 5.9 使用生成器表达式微调配置和编译
- 第6章 生成源码
- 6.1 配置时生成源码
- 6.2 使用Python在配置时生成源码
- 6.3 构建时使用Python生成源码
- 6.4 记录项目版本信息以便报告
- 6.5 从文件中记录项目版本
- 6.6 配置时记录Git Hash值
- 6.7 构建时记录Git Hash值
- 第7章 构建项目
- 7.1 使用函数和宏重用代码
- 7.2 将CMake源代码分成模块
- 7.3 编写函数来测试和设置编译器标志
- 7.4 用指定参数定义函数或宏
- 7.5 重新定义函数和宏
- 7.6 使用废弃函数、宏和变量
- 7.7 add_subdirectory的限定范围
- 7.8 使用target_sources避免全局变量
- 7.9 组织Fortran项目
- 第8章 超级构建模式
- 8.1 使用超级构建模式
- 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
- 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
- 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
- 8.5 使用超级构建支持项目
- 第9章 语言混合项目
- 9.1 使用C/C++库构建Fortran项目
- 9.2 使用Fortran库构建C/C++项目
- 9.3 使用Cython构建C++和Python项目
- 9.4 使用Boost.Python构建C++和Python项目
- 9.5 使用pybind11构建C++和Python项目
- 9.6 使用Python CFFI混合C,C++,Fortran和Python
- 第10章 编写安装程序
- 10.1 安装项目
- 10.2 生成输出头文件
- 10.3 输出目标
- 10.4 安装超级构建
- 第11章 打包项目
- 11.1 生成源代码和二进制包
- 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
- 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
- 11.4 以Conda包的形式发布一个简单的项目
- 11.5 将Conda包作为依赖项发布给项目
- 第12章 构建文档
- 12.1 使用Doxygen构建文档
- 12.2 使用Sphinx构建文档
- 12.3 结合Doxygen和Sphinx
- 第13章 选择生成器和交叉编译
- 13.1 使用CMake构建Visual Studio 2017项目
- 13.2 交叉编译hello world示例
- 13.3 使用OpenMP并行化交叉编译Windows二进制文件
- 第14章 测试面板
- 14.1 将测试部署到CDash
- 14.2 CDash显示测试覆盖率
- 14.3 使用AddressSanifier向CDash报告内存缺陷
- 14.4 使用ThreadSaniiser向CDash报告数据争用
- 第15章 使用CMake构建已有项目
- 15.1 如何开始迁移项目
- 15.2 生成文件并编写平台检查
- 15.3 检测所需的链接和依赖关系
- 15.4 复制编译标志
- 15.5 移植测试
- 15.6 移植安装目标
- 15.7 进一步迁移的措施
- 15.8 项目转换为CMake的常见问题
- 第16章 可能感兴趣的书
- 16.1 留下评论——让其他读者知道你的想法