💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
# 7.9 组织Fortran项目 **NOTE**:*此示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-7/recipe-09 中找到,其中有一个Fortran示例。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。* 我们来讨论如何构造和组织Fortran项目,原因有二: 1. 现在,仍然有很多Fortran项目,特别是在数字软件中(有关通用Fortran软件项目的更全面列表,请参见http://fortranwiki.org/fortran/show/Libraries )。 2. 对于不使用CMake的项目,Fortran 90(以及更高版本)可能更难构建,因为Fortran模块强制执行编译顺序。换句话说,对于手工编写的Makefile,通常需要为Fortran模块文件编写依赖扫描程序。 正如我们在本示例中所示,现代CMake允许我们以非常紧凑和模块化的方式配置和构建项目。作为一个例子,我们将使用前两个示例中的基本元胞自动机,现在将其移植到Fortran。 ## 准备工作 文件树结构与前两个示例非常相似。我们用Fortran源代码替换了C++,现在就没有头文件了: ```shell . ├── CMakeLists.txt ├── external │ ├── CMakeLists.txt │ ├── conversion.f90 │ └── README.md ├── src │ ├── CMakeLists.txt │ ├── evolution │ │ ├── ancestors.f90 │ │ ├── CMakeLists.txt │ │ ├── empty.f90 │ │ └── evolution.f90 │ ├── initial │ │ ├── CMakeLists.txt │ │ └── initial.f90 │ ├── io │ │ ├── CMakeLists.txt │ │ └── io.f90 │ ├── main.f90 │ └── parser │ ├── CMakeLists.txt │ └── parser.f90 └── tests ├── CMakeLists.txt └── test.f90 ``` 主程序在` src/main.f90`中: ```fortran program example use parser, only: get_arg_as_int use conversion, only: binary_representation use initial, only: initial_distribution use io, only: print_row use evolution, only: evolve implicit none integer :: num_steps integer :: length integer :: rule_decimal integer :: rule_binary(8) integer, allocatable :: row(:) integer :: step ! parse arguments num_steps = get_arg_as_int(1) length = get_arg_as_int(2) rule_decimal = get_arg_as_int(3) ! print information about parameters print *, "number of steps: ", num_steps print *, "length: ", length print *, "rule: ", rule_decimal ! obtain binary representation for the rule rule_binary = binary_representation(rule_decimal) ! create initial distribution allocate(row(length)) call initial_distribution(row) ! print initial configuration call print_row(row) ! the system evolves, print each step do step = 1, num_steps call evolve(row, rule_binary) call print_row(row) end do deallocate(row) end program ``` 与前面的示例一样,我们已经将conversion模块放入`external/conversion.f90`中: ```fortran module conversion implicit none public binary_representation private contains pure function binary_representation(n_decimal) integer, intent(in) :: n_decimal integer :: binary_representation(8) integer :: pos integer :: n binary_representation = 0 pos = 8 n = n_decimal do while (n > 0) binary_representation(pos) = mod(n, 2) n = (n - binary_representation(pos))/2 pos = pos - 1 end do end function end module ``` evolution库分成三个文件,大部分在`src/evolution/evolution.f90`中: ```fortran module evolution implicit none public evolve private contains subroutine not_visible() ! no-op call to demonstrate private/public visibility call empty_subroutine_no_interface() end subroutine pure subroutine evolve(row, rule_binary) use ancestors, only: compute_ancestors integer, intent(inout) :: row(:) integer, intent(in) :: rule_binary(8) integer :: i integer :: left, center, right integer :: ancestry integer, allocatable :: new_row(:) allocate(new_row(size(row))) do i = 1, size(row) left = i - 1 center = i right = i + 1 if (left < 1) left = left + size(row) if (right > size(row)) right = right - size(row) ancestry = compute_ancestors(row, left, center, right) new_row(i) = rule_binary(ancestry) end do row = new_row deallocate(new_row) end subroutine end module ``` 祖先计算是在`src/evolution/ancestors.f90 `: ```fortran module ancestors implicit none public compute_ancestors private contains pure integer function compute_ancestors(row, left, center, right) result(i) integer, intent(in) :: row(:) integer, intent(in) :: left, center, right i = 4*row(left) + 2*row(center) + 1*row(right) i = 8 - i end function end module ``` 还有一个“空”模块在` src/evolution/empty.f90 `中: ```fortran module empty implicit none public empty_subroutine private contains subroutine empty_subroutine() end subroutine end module subroutine empty_subroutine_no_interface() use empty, only: empty_subroutine call empty_subroutine() end subroutine ``` 启动条件的代码位于`src/initial/initial.f90`: ```fortran module initial implicit none public initial_distribution private contains pure subroutine initial_distribution(row) integer, intent(out) :: row(:) row = 0 row(size(row)/2) = 1 end subroutine end module ``` ` src/io/io.f90`包含一个打印输出: ```fortran module io implicit none public print_row private contains subroutine print_row(row) integer, intent(in) :: row(:) character(size(row)) :: line integer :: i do i = 1, size(row) if (row(i) == 1) then line(i:i) = '*' else line(i:i) = ' ' end if end do print *, line end subroutine end module ``` `src/parser/parser.f90`用于解析命令行参数: ```fortran module parser implicit none public get_arg_as_int private contains integer function get_arg_as_int(n) result(i) integer, intent(in) :: n character(len=32) :: arg call get_command_argument(n, arg) read(arg , *) i end function end module ``` 最后,使用`tests/test.f90`对上面的实现进行测试: ```fortran program test use evolution, only: evolve implicit none integer :: row(9) integer :: expected_result(9) integer :: rule_binary(8) integer :: i ! test rule 90 row = (/0, 1, 0, 1, 0, 1, 0, 1, 0/) rule_binary = (/0, 1, 0, 1, 1, 0, 1, 0/) call evolve(row, rule_binary) expected_result = (/1, 0, 0, 0, 0, 0, 0, 0, 1/) do i = 1, 9 if (row(i) /= expected_result(i)) then print *, 'ERROR: test for rule 90 failed' call exit(1) end if end do ! test rule 222 row = (/0, 0, 0, 0, 1, 0, 0, 0, 0/) rule_binary = (/1, 1, 0, 1, 1, 1, 1, 0/) call evolve(row, rule_binary) expected_result = (/0, 0, 0, 1, 1, 1, 0, 0, 0/) do i = 1, 9 if (row(i) /= expected_result(i)) then print *, 'ERROR: test for rule 222 failed' call exit(1) end if end do end program ``` ## 具体实施 1. 主`CMakeLists.txt`类似于第7节,我们只是将CXX换成Fortran,去掉C++11的要求: ```cmake cmake_minimum_required(VERSION 3.5 FATAL_ERROR) project(recipe-09 LANGUAGES Fortran) include(GNUInstallDirs) set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR}) set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR}) set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_BINDIR}) # defines targets and sources add_subdirectory(src) # contains an "external" library we will link to add_subdirectory(external) # enable testing and define tests enable_testing() add_subdirectory(tests) ``` 2. 目标和源在`src/CMakeLists.txt`中定义(conversion目标除外): ```cmake add_executable(automata main.f90) add_subdirectory(evolution) add_subdirectory(initial) add_subdirectory(io) add_subdirectory(parser) target_link_libraries(automata PRIVATE conversion evolution initial io parser ) ``` 3. conversion库在`external/CMakeLists.txt`中定义: ```cmake add_library(conversion "") target_sources(conversion PUBLIC ${CMAKE_CURRENT_LIST_DIR}/conversion.f90 ) ``` 4. `src/CMakeLists.txt`文件添加了更多的子目录,这些子目录又包含`CMakeLists.txt`文件。它们在结构上都是相似的,例如:`src/initial/CMakeLists.txt`包含以下内容: ```cmake add_library(initial "") target_sources(initial PUBLIC ${CMAKE_CURRENT_LIST_DIR}/initial.f90 ) ``` 5. 有个例外的是`src/evolution/CMakeLists.txt`中的evolution库,我们将其分为三个源文件: ```cmake add_library(evolution "") target_sources(evolution PRIVATE empty.f90 PUBLIC ${CMAKE_CURRENT_LIST_DIR}/ancestors.f90 ${CMAKE_CURRENT_LIST_DIR}/evolution.f90 ) ``` 6. 单元测试在`tests/CMakeLists.txt`中注册: ```cmake add_executable(fortran_test test.f90) target_link_libraries(fortran_test evolution) add_test( NAME test_evolution COMMAND $<TARGET_FILE:fortran_test> ) ``` 7. 配置和构建项目,将产生以下输出: ```shell $ mkdir -p build $ cd build $ cmake .. $ cmake --build . Scanning dependencies of target conversion [ 4%] Building Fortran object external/CMakeFiles/conversion.dir/conversion.f90.o [ 8%] Linking Fortran static library ../lib64/libconversion.a [ 8%] Built target conversion Scanning dependencies of target evolution [ 12%] Building Fortran object src/evolution/CMakeFiles/evolution.dir/ancestors.f90.o [ 16%] Building Fortran object src/evolution/CMakeFiles/evolution.dir/empty.f90.o [ 20%] Building Fortran object src/evolution/CMakeFiles/evolution.dir/evolution.f90.o [ 25%] Linking Fortran static library ../../lib64/libevolution.a [ 25%] Built target evolution Scanning dependencies of target initial [ 29%] Building Fortran object src/initial/CMakeFiles/initial.dir/initial.f90.o [ 33%] Linking Fortran static library ../../lib64/libinitial.a [ 33%] Built target initial Scanning dependencies of target io [ 37%] Building Fortran object src/io/CMakeFiles/io.dir/io.f90.o [ 41%] Linking Fortran static library ../../lib64/libio.a [ 41%] Built target io Scanning dependencies of target parser [ 45%] Building Fortran object src/parser/CMakeFiles/parser.dir/parser.f90.o [ 50%] Linking Fortran static library ../../lib64/libparser.a [ 50%] Built target parser Scanning dependencies of target example [ 54%] Building Fortran object src/CMakeFiles/example.dir/__/external/conversion.f90.o [ 58%] Building Fortran object src/CMakeFiles/example.dir/evolution/ancestors.f90.o [ 62%] Building Fortran object src/CMakeFiles/example.dir/evolution/evolution.f90.o [ 66%] Building Fortran object src/CMakeFiles/example.dir/initial/initial.f90.o [ 70%] Building Fortran object src/CMakeFiles/example.dir/io/io.f90.o [ 75%] Building Fortran object src/CMakeFiles/example.dir/parser/parser.f90.o [ 79%] Building Fortran object src/CMakeFiles/example.dir/main.f90.o [ 83%] Linking Fortran executable ../bin/example [ 83%] Built target example Scanning dependencies of target fortran_test [ 87%] Building Fortran object tests/CMakeFiles/fortran_test.dir/__/src/evolution/ancestors.f90.o [ 91%] Building Fortran object tests/CMakeFiles/fortran_test.dir/__/src/evolution/evolution.f90.o [ 95%] Building Fortran object tests/CMakeFiles/fortran_test.dir/test.f90.o [100%] Linking Fortran executable ``` 8. 最后,运行单元测试: ```shell $ ctest Running tests... Start 1: test_evolution 1/1 Test #1: test_evolution ................... Passed 0.00 sec 100% tests passed, 0 tests failed out of 1 ``` ## 工作原理 第7节中使用`add_subdirectory`限制范围,将从下往上讨论CMake结构,从定义每个库的单个`CMakeLists.txt`文件开始,比如`src/evolution/CMakeLists.txt`: ```cmake add_library(evolution "") target_sources(evolution PRIVATE empty.f90 PUBLIC ${CMAKE_CURRENT_LIST_DIR}/ancestors.f90 ${CMAKE_CURRENT_LIST_DIR}/evolution.f90 ) ``` 这些独立的`CMakeLists.txt`文件定义了源文件的库,遵循与前两个示例相同的方式:开发或维护人员可以对其中文件分而治之。 首先用`add_library`定义库名,然后定义它的源和包含目录,以及它们的目标可见性。这种情况下,因为它们的模块接口是在库之外访问,所以`ancestors.f90`和` evolution.f90`都是`PUBLIC`,而模块接口` empty.f90 `不能在文件之外访问,因此将其标记为`PRIVATE`。 向上移动一层,库在`src/CMakeLists.txt`中封装: ```cmake add_executable(automata main.f90) add_subdirectory(evolution) add_subdirectory(initial) add_subdirectory(io) add_subdirectory(parser) target_link_libraries(automata PRIVATE conversion evolution initial io parser ) ``` 这个文件在主`CMakeLists.txt`中被引用。这意味着我们使用`CMakeLists.txt`文件(使用`add_subdirectory`添加)构建项目。正如第7节中讨论的,使用`add_subdirectory`限制范围,这种方法可以扩展到更大型的项目,而不需要在多个目录之间的全局变量中携带源文件列表,还可以隔离范围和名称空间。 将这个Fortran示例与C++版本(第7节)进行比较,我们可以注意到,在Fortran的情况下,相对的CMake工作量比较小;我们不需要使用`target_include_directory`,因为没有头文件,接口是通过生成的Fortran模块文件进行通信。另外,我们既不需要担心`target_sources`中列出的源文件的顺序,也不需要在库之间强制执行任何显式依赖关系。CMake能够从源文件依赖项推断Fortran模块依赖项。使用`target_sources`与`PRIVATE`和`PUBLIC`资源结合使用,以紧凑和健壮的方式表示接口。 ## 更多信息 这个示例中,我们没有指定应该放置Fortran模块文件的目录,并且保持了这个透明。模块文件的位置可以通过设置`CMAKE_Fortran_MODULE_DIRECTORY`变量来指定。注意,也可以将其设置为`Fortran_MODULE_DIRECTORY`,从而实现更好的控制。详细可见:https://cmake.org/cmake/help/v3.5/prop_tgt/Fortran_MODULE_DIRECTORY.html