# 5.1 使用平台无关的文件操作
**NOTE**:*此示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-5/recipe-01 中找到,其中包含一个C++例子。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。*
有些项目构建时,可能需要与平台的文件系统进行交互。也就是检查文件是否存在、创建新文件来存储临时信息、创建或提取打包文件等等。使用CMake不仅能够在不同的平台上生成构建系统,还能够在不复杂的逻辑情况下,进行文件操作,从而独立于操作系统。本示例将展示,如何以可移植的方式下载库文件。
## 准备工作
我们将展示如何提取Eigen库文件,并使用提取的源文件编译我们的项目。这个示例中,将重用第3章第7节的线性代数例子` linear-algebra.cpp `,用来检测外部库和程序、检测特征库。这里,假设已经包含Eigen库文件,已在项目构建前下载。
## 具体实施
项目需要解压缩Eigen打包文件,并相应地为目标设置包含目录:
1. 首先,使能C++11项目:
```cmake
cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
project(recipe-01 LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
```
2. 我们将自定义目标添加到构建系统中,自定义目标将提取构建目录中的库文件:
```cmake
add_custom_target(unpack-eigen
ALL
COMMAND
${CMAKE_COMMAND} -E tar xzf ${CMAKE_CURRENT_SOURCE_DIR}/eigen-eigen-5a0156e40feb.tar.gz
COMMAND
${CMAKE_COMMAND} -E rename eigen-eigen-5a0156e40feb eigen-3.3.4
WORKING_DIRECTORY
${CMAKE_CURRENT_BINARY_DIR}
COMMENT
"Unpacking Eigen3 in ${CMAKE_CURRENT_BINARY_DIR}/eigen-3.3.4"
)
```
3. 为源文件添加了一个可执行目标:
```cmake
add_executable(linear-algebra linear-algebra.cpp)
```
4. 由于源文件的编译依赖于Eigen头文件,需要显式地指定可执行目标对自定义目标的依赖关系:
```cmake
add_dependencies(linear-algebra unpack-eigen)
```
5. 最后,指定包含哪些目录:
```cmake
target_include_directories(linear-algebra
PRIVATE
${CMAKE_CURRENT_BINARY_DIR}/eigen-3.3.4
)
```
## 工作原理
细看` add_custom_target `这个命令:
```cmake
add_custom_target(unpack-eigen
ALL
COMMAND
${CMAKE_COMMAND} -E tar xzf ${CMAKE_CURRENT_SOURCE_DIR}/eigen-eigen-5a0156e40feb.tar.gz
COMMAND
${CMAKE_COMMAND} -E rename eigen-eigen-5a0156e40feb eigen-3.3.4
WORKING_DIRECTORY
${CMAKE_CURRENT_BINARY_DIR}
COMMENT
"Unpacking Eigen3 in ${CMAKE_CURRENT_BINARY_DIR}/eigen-3.3.4"
)
```
构建系统中引入了一个名为`unpack-eigen`的目标。因为我们传递了`ALL`参数,目标将始终被执行。`COMMAND`参数指定要执行哪些命令。本例中,我们希望提取存档并将提取的目录重命名为`egan -3.3.4`,通过以下两个命令实现:
```shell
${CMAKE_COMMAND} -E tar xzf ${CMAKE_CURRENT_SOURCE_DIR}/eigen-eigen-
5a0156e40feb.tar.gz
${CMAKE_COMMAND} -E rename eigen-eigen-5a0156e40feb eigen-3.3.4
```
注意,使用`-E`标志调用CMake命令本身来执行实际的工作。对于许多常见操作,CMake实现了一个对所有操作系统都通用的接口,这使得构建系统独立于特定的平台。`add_custom_target`命令中的下一个参数是工作目录。我们的示例中,它对应于构建目录:`CMAKE_CURRENT_BINARY_DIR`。最后一个参数`COMMENT`,用于指定CMake在执行自定义目标时输出什么样的消息。
## 更多信息
构建过程中必须执行一系列没有输出的命令时,可以使用`add_custom_target`命令。正如我们在本示例中所示,可以将自定义目标指定为项目中其他目标的依赖项。此外,自定义目标还可以依赖于其他目标。
使用`-E`标志可以以与操作系统无关的方式,运行许多公共操作。运行`cmake -E`或`cmake -E help`可以获得特定操作系统的完整列表。例如,这是Linux系统上命令的摘要:
```shell
Usage: cmake -E <command> [arguments...]
Available commands:
capabilities - Report capabilities built into cmake in JSON format
chdir dir cmd [args...] - run command in a given directory
compare_files file1 file2 - check if file1 is same as file2
copy <file>... destination - copy files to destination (either file or directory)
copy_directory <dir>... destination - copy content of <dir>... directories to 'destination' directory
copy_if_different <file>... destination - copy files if it has changed
echo [<string>...] - displays arguments as text
echo_append [<string>...] - displays arguments as text but no new line
env [--unset=NAME]... [NAME=VALUE]... COMMAND [ARG]...
- run command in a modified environment
environment - display the current environment
make_directory <dir>... - create parent and <dir> directories
md5sum <file>... - create MD5 checksum of files
sha1sum <file>... - create SHA1 checksum of files
sha224sum <file>... - create SHA224 checksum of files
sha256sum <file>... - create SHA256 checksum of files
sha384sum <file>... - create SHA384 checksum of files
sha512sum <file>... - create SHA512 checksum of files
remove [-f] <file>... - remove the file(s), use -f to force it
remove_directory dir - remove a directory and its contents
rename oldname newname - rename a file or directory (on one volume)
server - start cmake in server mode
sleep <number>... - sleep for given number of seconds
tar [cxt][vf][zjJ] file.tar [file/dir1 file/dir2 ...]
- create or extract a tar or zip archive
time command [args...] - run command and display elapsed time
touch file - touch a file.
touch_nocreate file - touch a file but do not create it.
Available on UNIX only:
create_symlink old new - create a symbolic link new -> old
```
- Introduction
- 前言
- 第0章 配置环境
- 0.1 获取代码
- 0.2 Docker镜像
- 0.3 安装必要的软件
- 0.4 测试环境
- 0.5 上报问题并提出改进建议
- 第1章 从可执行文件到库
- 1.1 将单个源文件编译为可执行文件
- 1.2 切换生成器
- 1.3 构建和链接静态库和动态库
- 1.4 用条件句控制编译
- 1.5 向用户显示选项
- 1.6 指定编译器
- 1.7 切换构建类型
- 1.8 设置编译器选项
- 1.9 为语言设定标准
- 1.10 使用控制流
- 第2章 检测环境
- 2.1 检测操作系统
- 2.2 处理与平台相关的源代码
- 2.3 处理与编译器相关的源代码
- 2.4 检测处理器体系结构
- 2.5 检测处理器指令集
- 2.6 为Eigen库使能向量化
- 第3章 检测外部库和程序
- 3.1 检测Python解释器
- 3.2 检测Python库
- 3.3 检测Python模块和包
- 3.4 检测BLAS和LAPACK数学库
- 3.5 检测OpenMP的并行环境
- 3.6 检测MPI的并行环境
- 3.7 检测Eigen库
- 3.8 检测Boost库
- 3.9 检测外部库:Ⅰ. 使用pkg-config
- 3.10 检测外部库:Ⅱ. 自定义find模块
- 第4章 创建和运行测试
- 4.1 创建一个简单的单元测试
- 4.2 使用Catch2库进行单元测试
- 4.3 使用Google Test库进行单元测试
- 4.4 使用Boost Test进行单元测试
- 4.5 使用动态分析来检测内存缺陷
- 4.6 预期测试失败
- 4.7 使用超时测试运行时间过长的测试
- 4.8 并行测试
- 4.9 运行测试子集
- 4.10 使用测试固件
- 第5章 配置时和构建时的操作
- 5.1 使用平台无关的文件操作
- 5.2 配置时运行自定义命令
- 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
- 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
- 5.5 构建时为特定目标运行自定义命令
- 5.6 探究编译和链接命令
- 5.7 探究编译器标志命令
- 5.8 探究可执行命令
- 5.9 使用生成器表达式微调配置和编译
- 第6章 生成源码
- 6.1 配置时生成源码
- 6.2 使用Python在配置时生成源码
- 6.3 构建时使用Python生成源码
- 6.4 记录项目版本信息以便报告
- 6.5 从文件中记录项目版本
- 6.6 配置时记录Git Hash值
- 6.7 构建时记录Git Hash值
- 第7章 构建项目
- 7.1 使用函数和宏重用代码
- 7.2 将CMake源代码分成模块
- 7.3 编写函数来测试和设置编译器标志
- 7.4 用指定参数定义函数或宏
- 7.5 重新定义函数和宏
- 7.6 使用废弃函数、宏和变量
- 7.7 add_subdirectory的限定范围
- 7.8 使用target_sources避免全局变量
- 7.9 组织Fortran项目
- 第8章 超级构建模式
- 8.1 使用超级构建模式
- 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
- 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
- 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
- 8.5 使用超级构建支持项目
- 第9章 语言混合项目
- 9.1 使用C/C++库构建Fortran项目
- 9.2 使用Fortran库构建C/C++项目
- 9.3 使用Cython构建C++和Python项目
- 9.4 使用Boost.Python构建C++和Python项目
- 9.5 使用pybind11构建C++和Python项目
- 9.6 使用Python CFFI混合C,C++,Fortran和Python
- 第10章 编写安装程序
- 10.1 安装项目
- 10.2 生成输出头文件
- 10.3 输出目标
- 10.4 安装超级构建
- 第11章 打包项目
- 11.1 生成源代码和二进制包
- 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
- 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
- 11.4 以Conda包的形式发布一个简单的项目
- 11.5 将Conda包作为依赖项发布给项目
- 第12章 构建文档
- 12.1 使用Doxygen构建文档
- 12.2 使用Sphinx构建文档
- 12.3 结合Doxygen和Sphinx
- 第13章 选择生成器和交叉编译
- 13.1 使用CMake构建Visual Studio 2017项目
- 13.2 交叉编译hello world示例
- 13.3 使用OpenMP并行化交叉编译Windows二进制文件
- 第14章 测试面板
- 14.1 将测试部署到CDash
- 14.2 CDash显示测试覆盖率
- 14.3 使用AddressSanifier向CDash报告内存缺陷
- 14.4 使用ThreadSaniiser向CDash报告数据争用
- 第15章 使用CMake构建已有项目
- 15.1 如何开始迁移项目
- 15.2 生成文件并编写平台检查
- 15.3 检测所需的链接和依赖关系
- 15.4 复制编译标志
- 15.5 移植测试
- 15.6 移植安装目标
- 15.7 进一步迁移的措施
- 15.8 项目转换为CMake的常见问题
- 第16章 可能感兴趣的书
- 16.1 留下评论——让其他读者知道你的想法