# 1.8 设置编译器选项
**NOTE**:*此示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-01/recipe-08 中找到,有一个C++示例。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。*
前面的示例展示了如何探测CMake,从而获得关于编译器的信息,以及如何切换项目中的编译器。后一个任务是控制项目的编译器标志。CMake为调整或扩展编译器标志提供了很大的灵活性,您可以选择下面两种方法:
* CMake将编译选项视为目标属性。因此,可以根据每个目标设置编译选项,而不需要覆盖CMake默认值。
* 可以使用`-D`CLI标志直接修改`CMAKE_<LANG>_FLAGS_<CONFIG>`变量。这将影响项目中的所有目标,并覆盖或扩展CMake默认值。
本示例中,我们将展示这两种方法。
## 准备工作
编写一个示例程序,计算不同几何形状的面积,`computer_area.cpp`:
```c++
#include "geometry_circle.hpp"
#include "geometry_polygon.hpp"
#include "geometry_rhombus.hpp"
#include "geometry_square.hpp"
#include <cstdlib>
#include <iostream>
int main() {
using namespace geometry;
double radius = 2.5293;
double A_circle = area::circle(radius);
std::cout << "A circle of radius " << radius << " has an area of " << A_circle
<< std::endl;
int nSides = 19;
double side = 1.29312;
double A_polygon = area::polygon(nSides, side);
std::cout << "A regular polygon of " << nSides << " sides of length " << side
<< " has an area of " << A_polygon << std::endl;
double d1 = 5.0;
double d2 = 7.8912;
double A_rhombus = area::rhombus(d1, d2);
std::cout << "A rhombus of major diagonal " << d1 << " and minor diagonal " << d2
<< " has an area of " << A_rhombus << std::endl;
double l = 10.0;
double A_square = area::square(l);
std::cout << "A square of side " << l << " has an area of " << A_square
<< std::endl;
return EXIT_SUCCESS;
}
```
函数的各种实现分布在不同的文件中,每个几何形状都有一个头文件和源文件。总共有4个头文件和5个源文件要编译:
```shell
.
├─ CMakeLists.txt
├─ compute-areas.cpp
├─ geometry_circle.cpp
├─ geometry_circle.hpp
├─ geometry_polygon.cpp
├─ geometry_polygon.hpp
├─ geometry_rhombus.cpp
├─ geometry_rhombus.hpp
├─ geometry_square.cpp
└─ geometry_square.hpp
```
我们不会为所有文件提供清单,读者可以参考 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-01/recipe-08 。
## 具体实施
现在已经有了源代码,我们的目标是配置项目,并使用编译器标示进行实验:
1. 设置CMake的最低版本:
```cmake
cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
```
2. 声明项目名称和语言:
```cmake
project(recipe-08 LANGUAGES CXX)
```
3. 然后,打印当前编译器标志。CMake将对所有C++目标使用这些:
```cmake
message("C++ compiler flags: ${CMAKE_CXX_FLAGS}")
```
4. 为目标准备了标志列表,其中一些将无法在Windows上使用:
```cmake
list(APPEND flags "-fPIC" "-Wall")
if(NOT WIN32)
list(APPEND flags "-Wextra" "-Wpedantic")
endif()
```
5. 添加了一个新的目标——`geometry`库,并列出它的源依赖关系:
```cmake
add_library(geometry
STATIC
geometry_circle.cpp
geometry_circle.hpp
geometry_polygon.cpp
geometry_polygon.hpp
geometry_rhombus.cpp
geometry_rhombus.hpp
geometry_square.cpp
geometry_square.hpp
)
```
6. 为这个库目标设置了编译选项:
```cmake
target_compile_options(geometry
PRIVATE
${flags}
)
```
7. 然后,将生成`compute-areas`可执行文件作为一个目标:
```cmkae
add_executable(compute-areas compute-areas.cpp)
```
8. 还为可执行目标设置了编译选项:
```cmake
target_compile_options(compute-areas
PRIVATE
"-fPIC"
)
```
9. 最后,将可执行文件链接到geometry库:
```cmake
target_link_libraries(compute-areas geometry)
```
## 如何工作
本例中,警告标志有`-Wall`、`-Wextra`和`-Wpedantic`,将这些标示添加到`geometry`目标的编译选项中; `compute-areas`和 `geometry`目标都将使用`-fPIC`标志。编译选项可以添加三个级别的可见性:`INTERFACE`、`PUBLIC`和`PRIVATE`。
可见性的含义如下:
* **PRIVATE**,编译选项会应用于给定的目标,不会传递给与目标相关的目标。我们的示例中, 即使`compute-areas`将链接到`geometry`库,`compute-areas`也不会继承`geometry`目标上设置的编译器选项。
* **INTERFACE**,给定的编译选项将只应用于指定目标,并传递给与目标相关的目标。
* **PUBLIC**,编译选项将应用于指定目标和使用它的目标。
目标属性的可见性CMake的核心,我们将在本书中经常讨论这个话题。以这种方式添加编译选项,不会影响全局CMake变量`CMAKE_<LANG>_FLAGS_<CONFIG>`,并能更细粒度控制在哪些目标上使用哪些选项。
我们如何验证,这些标志是否按照我们的意图正确使用呢?或者换句话说,如何确定项目在CMake构建时,实际使用了哪些编译标志?一种方法是,使用CMake将额外的参数传递给本地构建工具。本例中会设置环境变量`VERBOSE=1`:
```shell
$ mkdir -p build
$ cd build
$ cmake ..
$ cmake --build . -- VERBOSE=1
... lots of output ...
[ 14%] Building CXX object CMakeFiles/geometry.dir/geometry_circle.cpp.o
/usr/bin/c++ -fPIC -Wall -Wextra -Wpedantic -o CMakeFiles/geometry.dir/geometry_circle.cpp.o -c /home/bast/tmp/cmake-cookbook/chapter-01/recipe-08/cxx-example/geometry_circle.cpp
[ 28%] Building CXX object CMakeFiles/geometry.dir/geometry_polygon.cpp.o
/usr/bin/c++ -fPIC -Wall -Wextra -Wpedantic -o CMakeFiles/geometry.dir/geometry_polygon.cpp.o -c /home/bast/tmp/cmake-cookbook/chapter-01/recipe-08/cxx-example/geometry_polygon.cpp
[ 42%] Building CXX object CMakeFiles/geometry.dir/geometry_rhombus.cpp.o
/usr/bin/c++ -fPIC -Wall -Wextra -Wpedantic -o CMakeFiles/geometry.dir/geometry_rhombus.cpp.o -c /home/bast/tmp/cmake-cookbook/chapter-01/recipe-08/cxx-example/geometry_rhombus.cpp
[ 57%] Building CXX object CMakeFiles/geometry.dir/geometry_square.cpp.o
/usr/bin/c++ -fPIC -Wall -Wextra -Wpedantic -o CMakeFiles/geometry.dir/geometry_square.cpp.o -c /home/bast/tmp/cmake-cookbook/chapter-01/recipe-08/cxx-example/geometry_square.cpp
... more output ...
[ 85%] Building CXX object CMakeFiles/compute-areas.dir/compute-areas.cpp.o
/usr/bin/c++ -fPIC -o CMakeFiles/compute-areas.dir/compute-areas.cpp.o -c /home/bast/tmp/cmake-cookbook/chapter-01/recipe-08/cxx-example/compute-areas.cpp
... more output ...
```
输出确认编译标志,确认指令设置正确。
控制编译器标志的第二种方法,不用对`CMakeLists.txt`进行修改。如果想在这个项目中修改`geometry`和`compute-areas`目标的编译器选项,可以使用CMake参数进行配置:
```shell
$ cmake -D CMAKE_CXX_FLAGS="-fno-exceptions -fno-rtti" ..
```
这个命令将编译项目,禁用异常和运行时类型标识(RTTI)。
也可以使用全局标志,可以使用`CMakeLists.txt`运行以下命令:
```shell
$ cmake -D CMAKE_CXX_FLAGS="-fno-exceptions -fno-rtti" ..
```
这将使用`-fno-rtti - fpic - wall - Wextra - wpedantic`配置`geometry`目标,同时使用`-fno exception -fno-rtti - fpic`配置`compute-areas`。
**NOTE**:*本书中,我们推荐为每个目标设置编译器标志。使用`target_compile_options()`不仅允许对编译选项进行细粒度控制,而且还可以更好地与CMake的更高级特性进行集成。*
## 更多信息
大多数时候,编译器有特性标示。当前的例子只适用于`GCC`和`Clang`;其他供应商的编译器不确定是否会理解(如果不是全部)这些标志。如果项目是真正跨平台,那么这个问题就必须得到解决,有三种方法可以解决这个问题。
最典型的方法是将所需编译器标志列表附加到每个配置类型CMake变量`CMAKE_<LANG>_FLAGS_<CONFIG> `。标志确定设置为给定编译器有效的标志,因此将包含在`if-endif`子句中,用于检查`CMAKE_<LANG>_COMPILER_ID`变量,例如:
```cmake
if(CMAKE_CXX_COMPILER_ID MATCHES GNU)
list(APPEND CMAKE_CXX_FLAGS "-fno-rtti" "-fno-exceptions")
list(APPEND CMAKE_CXX_FLAGS_DEBUG "-Wsuggest-final-types" "-Wsuggest-final-methods" "-Wsuggest-override")
list(APPEND CMAKE_CXX_FLAGS_RELEASE "-O3" "-Wno-unused")
endif()
if(CMAKE_CXX_COMPILER_ID MATCHES Clang)
list(APPEND CMAKE_CXX_FLAGS "-fno-rtti" "-fno-exceptions" "-Qunused-arguments" "-fcolor-diagnostics")
list(APPEND CMAKE_CXX_FLAGS_DEBUG "-Wdocumentation")
list(APPEND CMAKE_CXX_FLAGS_RELEASE "-O3" "-Wno-unused")
endif()
```
更细粒度的方法是,不修改` CMAKE_<LANG>_FLAGS_<CONFIG>`变量,而是定义特定的标志列表:
```cmake
set(COMPILER_FLAGS)
set(COMPILER_FLAGS_DEBUG)
set(COMPILER_FLAGS_RELEASE)
if(CMAKE_CXX_COMPILER_ID MATCHES GNU)
list(APPEND CXX_FLAGS "-fno-rtti" "-fno-exceptions")
list(APPEND CXX_FLAGS_DEBUG "-Wsuggest-final-types" "-Wsuggest-final-methods" "-Wsuggest-override")
list(APPEND CXX_FLAGS_RELEASE "-O3" "-Wno-unused")
endif()
if(CMAKE_CXX_COMPILER_ID MATCHES Clang)
list(APPEND CXX_FLAGS "-fno-rtti" "-fno-exceptions" "-Qunused-arguments" "-fcolor-diagnostics")
list(APPEND CXX_FLAGS_DEBUG "-Wdocumentation")
list(APPEND CXX_FLAGS_RELEASE "-O3" "-Wno-unused")
endif()
```
稍后,使用生成器表达式来设置编译器标志的基础上,为每个配置和每个目标生成构建系统:
```cmake
target_compile_option(compute-areas
PRIVATE
${CXX_FLAGS}
"$<$<CONFIG:Debug>:${CXX_FLAGS_DEBUG}>"
"$<$<CONFIG:Release>:${CXX_FLAGS_RELEASE}>"
)
```
当前示例中展示了这两种方法,我们推荐后者(特定于项目的变量和`target_compile_options`)。
两种方法都有效,并在许多项目中得到广泛应用。不过,每种方式都有缺点。`CMAKE_<LANG>_COMPILER_ID `不能保证为所有编译器都定义。此外,一些标志可能会被弃用,或者在编译器的较晚版本中引入。与`CMAKE_<LANG>_COMPILER_ID `类似,`CMAKE_<LANG>_COMPILER_VERSION`变量不能保证为所有语言和供应商都提供定义。尽管检查这些变量的方式非常流行,但我们认为更健壮的替代方法是检查所需的标志集是否与给定的编译器一起工作,这样项目中实际上只使用有效的标志。结合特定于项目的变量、`target_compile_options`和生成器表达式,会让解决方案变得非常强大。我们将在第7章的第3节中展示,如何使用`check-and-set`模式。
- Introduction
- 前言
- 第0章 配置环境
- 0.1 获取代码
- 0.2 Docker镜像
- 0.3 安装必要的软件
- 0.4 测试环境
- 0.5 上报问题并提出改进建议
- 第1章 从可执行文件到库
- 1.1 将单个源文件编译为可执行文件
- 1.2 切换生成器
- 1.3 构建和链接静态库和动态库
- 1.4 用条件句控制编译
- 1.5 向用户显示选项
- 1.6 指定编译器
- 1.7 切换构建类型
- 1.8 设置编译器选项
- 1.9 为语言设定标准
- 1.10 使用控制流
- 第2章 检测环境
- 2.1 检测操作系统
- 2.2 处理与平台相关的源代码
- 2.3 处理与编译器相关的源代码
- 2.4 检测处理器体系结构
- 2.5 检测处理器指令集
- 2.6 为Eigen库使能向量化
- 第3章 检测外部库和程序
- 3.1 检测Python解释器
- 3.2 检测Python库
- 3.3 检测Python模块和包
- 3.4 检测BLAS和LAPACK数学库
- 3.5 检测OpenMP的并行环境
- 3.6 检测MPI的并行环境
- 3.7 检测Eigen库
- 3.8 检测Boost库
- 3.9 检测外部库:Ⅰ. 使用pkg-config
- 3.10 检测外部库:Ⅱ. 自定义find模块
- 第4章 创建和运行测试
- 4.1 创建一个简单的单元测试
- 4.2 使用Catch2库进行单元测试
- 4.3 使用Google Test库进行单元测试
- 4.4 使用Boost Test进行单元测试
- 4.5 使用动态分析来检测内存缺陷
- 4.6 预期测试失败
- 4.7 使用超时测试运行时间过长的测试
- 4.8 并行测试
- 4.9 运行测试子集
- 4.10 使用测试固件
- 第5章 配置时和构建时的操作
- 5.1 使用平台无关的文件操作
- 5.2 配置时运行自定义命令
- 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
- 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
- 5.5 构建时为特定目标运行自定义命令
- 5.6 探究编译和链接命令
- 5.7 探究编译器标志命令
- 5.8 探究可执行命令
- 5.9 使用生成器表达式微调配置和编译
- 第6章 生成源码
- 6.1 配置时生成源码
- 6.2 使用Python在配置时生成源码
- 6.3 构建时使用Python生成源码
- 6.4 记录项目版本信息以便报告
- 6.5 从文件中记录项目版本
- 6.6 配置时记录Git Hash值
- 6.7 构建时记录Git Hash值
- 第7章 构建项目
- 7.1 使用函数和宏重用代码
- 7.2 将CMake源代码分成模块
- 7.3 编写函数来测试和设置编译器标志
- 7.4 用指定参数定义函数或宏
- 7.5 重新定义函数和宏
- 7.6 使用废弃函数、宏和变量
- 7.7 add_subdirectory的限定范围
- 7.8 使用target_sources避免全局变量
- 7.9 组织Fortran项目
- 第8章 超级构建模式
- 8.1 使用超级构建模式
- 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
- 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
- 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
- 8.5 使用超级构建支持项目
- 第9章 语言混合项目
- 9.1 使用C/C++库构建Fortran项目
- 9.2 使用Fortran库构建C/C++项目
- 9.3 使用Cython构建C++和Python项目
- 9.4 使用Boost.Python构建C++和Python项目
- 9.5 使用pybind11构建C++和Python项目
- 9.6 使用Python CFFI混合C,C++,Fortran和Python
- 第10章 编写安装程序
- 10.1 安装项目
- 10.2 生成输出头文件
- 10.3 输出目标
- 10.4 安装超级构建
- 第11章 打包项目
- 11.1 生成源代码和二进制包
- 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
- 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
- 11.4 以Conda包的形式发布一个简单的项目
- 11.5 将Conda包作为依赖项发布给项目
- 第12章 构建文档
- 12.1 使用Doxygen构建文档
- 12.2 使用Sphinx构建文档
- 12.3 结合Doxygen和Sphinx
- 第13章 选择生成器和交叉编译
- 13.1 使用CMake构建Visual Studio 2017项目
- 13.2 交叉编译hello world示例
- 13.3 使用OpenMP并行化交叉编译Windows二进制文件
- 第14章 测试面板
- 14.1 将测试部署到CDash
- 14.2 CDash显示测试覆盖率
- 14.3 使用AddressSanifier向CDash报告内存缺陷
- 14.4 使用ThreadSaniiser向CDash报告数据争用
- 第15章 使用CMake构建已有项目
- 15.1 如何开始迁移项目
- 15.2 生成文件并编写平台检查
- 15.3 检测所需的链接和依赖关系
- 15.4 复制编译标志
- 15.5 移植测试
- 15.6 移植安装目标
- 15.7 进一步迁移的措施
- 15.8 项目转换为CMake的常见问题
- 第16章 可能感兴趣的书
- 16.1 留下评论——让其他读者知道你的想法