# 2.5 检测处理器指令集
**NOTE**:*此示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-02/recipe-05 中找到,包含一个C++示例。该示例在CMake 3.10版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。*
本示例中,我们将讨论如何在CMake的帮助下检测主机处理器支持的指令集。这个功能是较新版本添加到CMake中的,需要CMake 3.10或更高版本。检测到的主机系统信息,可用于设置相应的编译器标志,或实现可选的源代码编译,或根据主机系统生成源代码。本示例中,我们的目标是检测主机系统信息,使用预处理器定义将其传递给`C++`源代码,并将信息打印到输出中。
## 准备工作
我们是`C++`源码(`processor-info.cpp`)如下所示:
```c++
#include "config.h"
#include <cstdlib>
#include <iostream>
int main()
{
std::cout << "Number of logical cores: "
<< NUMBER_OF_LOGICAL_CORES << std::endl;
std::cout << "Number of physical cores: "
<< NUMBER_OF_PHYSICAL_CORES << std::endl;
std::cout << "Total virtual memory in megabytes: "
<< TOTAL_VIRTUAL_MEMORY << std::endl;
std::cout << "Available virtual memory in megabytes: "
<< AVAILABLE_VIRTUAL_MEMORY << std::endl;
std::cout << "Total physical memory in megabytes: "
<< TOTAL_PHYSICAL_MEMORY << std::endl;
std::cout << "Available physical memory in megabytes: "
<< AVAILABLE_PHYSICAL_MEMORY << std::endl;
std::cout << "Processor is 64Bit: "
<< IS_64BIT << std::endl;
std::cout << "Processor has floating point unit: "
<< HAS_FPU << std::endl;
std::cout << "Processor supports MMX instructions: "
<< HAS_MMX << std::endl;
std::cout << "Processor supports Ext. MMX instructions: "
<< HAS_MMX_PLUS << std::endl;
std::cout << "Processor supports SSE instructions: "
<< HAS_SSE << std::endl;
std::cout << "Processor supports SSE2 instructions: "
<< HAS_SSE2 << std::endl;
std::cout << "Processor supports SSE FP instructions: "
<< HAS_SSE_FP << std::endl;
std::cout << "Processor supports SSE MMX instructions: "
<< HAS_SSE_MMX << std::endl;
std::cout << "Processor supports 3DNow instructions: "
<< HAS_AMD_3DNOW << std::endl;
std::cout << "Processor supports 3DNow+ instructions: "
<< HAS_AMD_3DNOW_PLUS << std::endl;
std::cout << "IA64 processor emulating x86 : "
<< HAS_IA64 << std::endl;
std::cout << "OS name: "
<< OS_NAME << std::endl;
std::cout << "OS sub-type: "
<< OS_RELEASE << std::endl;
std::cout << "OS build ID: "
<< OS_VERSION << std::endl;
std::cout << "OS platform: "
<< OS_PLATFORM << std::endl;
return EXIT_SUCCESS;
}
```
其包含`config.h`头文件,我们将使用`config.h.in`生成这个文件。`config.h.in`如下:
```c++
#pragma once
#define NUMBER_OF_LOGICAL_CORES @_NUMBER_OF_LOGICAL_CORES@
#define NUMBER_OF_PHYSICAL_CORES @_NUMBER_OF_PHYSICAL_CORES@
#define TOTAL_VIRTUAL_MEMORY @_TOTAL_VIRTUAL_MEMORY@
#define AVAILABLE_VIRTUAL_MEMORY @_AVAILABLE_VIRTUAL_MEMORY@
#define TOTAL_PHYSICAL_MEMORY @_TOTAL_PHYSICAL_MEMORY@
#define AVAILABLE_PHYSICAL_MEMORY @_AVAILABLE_PHYSICAL_MEMORY@
#define IS_64BIT @_IS_64BIT@
#define HAS_FPU @_HAS_FPU@
#define HAS_MMX @_HAS_MMX@
#define HAS_MMX_PLUS @_HAS_MMX_PLUS@
#define HAS_SSE @_HAS_SSE@
#define HAS_SSE2 @_HAS_SSE2@
#define HAS_SSE_FP @_HAS_SSE_FP@
#define HAS_SSE_MMX @_HAS_SSE_MMX@
#define HAS_AMD_3DNOW @_HAS_AMD_3DNOW@
#define HAS_AMD_3DNOW_PLUS @_HAS_AMD_3DNOW_PLUS@
#define HAS_IA64 @_HAS_IA64@
#define OS_NAME "@_OS_NAME@"
#define OS_RELEASE "@_OS_RELEASE@"
#define OS_VERSION "@_OS_VERSION@"
#define OS_PLATFORM "@_OS_PLATFORM@"
```
## 如何实施
我们将使用CMake为平台填充`config.h`中的定义,并将示例源文件编译为可执行文件:
1. 首先,我们定义了CMake最低版本、项目名称和项目语言:
```cmake
cmake_minimum_required(VERSION 3.10 FATAL_ERROR)
project(recipe-05 CXX)
```
2. 然后,定义目标可执行文件及其源文件,并包括目录:
```cmake
add_executable(processor-info "")
target_sources(processor-info
PRIVATE
processor-info.cpp
)
target_include_directories(processor-info
PRIVATE
${PROJECT_BINARY_DIR}
)
```
3. 继续查询主机系统的信息,获取一些关键字:
```cmake
foreach(key
IN ITEMS
NUMBER_OF_LOGICAL_CORES
NUMBER_OF_PHYSICAL_CORES
TOTAL_VIRTUAL_MEMORY
AVAILABLE_VIRTUAL_MEMORY
TOTAL_PHYSICAL_MEMORY
AVAILABLE_PHYSICAL_MEMORY
IS_64BIT
HAS_FPU
HAS_MMX
HAS_MMX_PLUS
HAS_SSE
HAS_SSE2
HAS_SSE_FP
HAS_SSE_MMX
HAS_AMD_3DNOW
HAS_AMD_3DNOW_PLUS
HAS_IA64
OS_NAME
OS_RELEASE
OS_VERSION
OS_PLATFORM
)
cmake_host_system_information(RESULT _${key} QUERY ${key})
endforeach()
```
4. 定义了相应的变量后,配置`config.h`:
```cmake
configure_file(config.h.in config.h @ONLY)
```
5. 现在准备好配置、构建和测试项目:
```shell
$ mkdir -p build
$ cd build
$ cmake ..
$ cmake --build .
$ ./processor-info
Number of logical cores: 4
Number of physical cores: 2
Total virtual memory in megabytes: 15258
Available virtual memory in megabytes: 14678
Total physical memory in megabytes: 7858
Available physical memory in megabytes: 4072
Processor is 64Bit: 1
Processor has floating point unit: 1
Processor supports MMX instructions: 1
Processor supports Ext. MMX instructions: 0
Processor supports SSE instructions: 1
Processor supports SSE2 instructions: 1
Processor supports SSE FP instructions: 0
Processor supports SSE MMX instructions: 0
Processor supports 3DNow instructions: 0
Processor supports 3DNow+ instructions: 0
IA64 processor emulating x86 : 0
OS name: Linux
OS sub-type: 4.16.7-1-ARCH
OS build ID: #1 SMP PREEMPT Wed May 2 21:12:36 UTC 2018
OS platform: x86_64
```
6. 输出会随着处理器的不同而变化。
## 工作原理
`CMakeLists.txt`中的`foreach`循环会查询多个键值,并定义相应的变量。此示例的核心函数是`cmake_host_system_information`,它查询运行CMake的主机系统的系统信息。本例中,我们对每个键使用了一个函数调用。然后,使用这些变量来配置`config.h.in`中的占位符,输入并生成`config.h`。此配置使用`configure_file`命令完成。最后,`config.h`包含在`processor-info.cpp`中。编译后,它将把值打印到屏幕上。我们将在第5章(配置时和构建时操作)和第6章(生成源代码)中重新讨论这种方法。
## 更多信息
对于更细粒度的处理器指令集检测,请考虑以下模块: https://github.com/VcDevel/Vc/blob/master/cmake/OptimizeForArchitecture.cmake 。有时候,构建代码的主机可能与运行代码的主机不一样。在计算集群中,登录节点的体系结构可能与计算节点上的体系结构不同。解决此问题的一种方法是,将配置和编译作为计算步骤,提交并部署到相应计算节点上。
- Introduction
- 前言
- 第0章 配置环境
- 0.1 获取代码
- 0.2 Docker镜像
- 0.3 安装必要的软件
- 0.4 测试环境
- 0.5 上报问题并提出改进建议
- 第1章 从可执行文件到库
- 1.1 将单个源文件编译为可执行文件
- 1.2 切换生成器
- 1.3 构建和链接静态库和动态库
- 1.4 用条件句控制编译
- 1.5 向用户显示选项
- 1.6 指定编译器
- 1.7 切换构建类型
- 1.8 设置编译器选项
- 1.9 为语言设定标准
- 1.10 使用控制流
- 第2章 检测环境
- 2.1 检测操作系统
- 2.2 处理与平台相关的源代码
- 2.3 处理与编译器相关的源代码
- 2.4 检测处理器体系结构
- 2.5 检测处理器指令集
- 2.6 为Eigen库使能向量化
- 第3章 检测外部库和程序
- 3.1 检测Python解释器
- 3.2 检测Python库
- 3.3 检测Python模块和包
- 3.4 检测BLAS和LAPACK数学库
- 3.5 检测OpenMP的并行环境
- 3.6 检测MPI的并行环境
- 3.7 检测Eigen库
- 3.8 检测Boost库
- 3.9 检测外部库:Ⅰ. 使用pkg-config
- 3.10 检测外部库:Ⅱ. 自定义find模块
- 第4章 创建和运行测试
- 4.1 创建一个简单的单元测试
- 4.2 使用Catch2库进行单元测试
- 4.3 使用Google Test库进行单元测试
- 4.4 使用Boost Test进行单元测试
- 4.5 使用动态分析来检测内存缺陷
- 4.6 预期测试失败
- 4.7 使用超时测试运行时间过长的测试
- 4.8 并行测试
- 4.9 运行测试子集
- 4.10 使用测试固件
- 第5章 配置时和构建时的操作
- 5.1 使用平台无关的文件操作
- 5.2 配置时运行自定义命令
- 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
- 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
- 5.5 构建时为特定目标运行自定义命令
- 5.6 探究编译和链接命令
- 5.7 探究编译器标志命令
- 5.8 探究可执行命令
- 5.9 使用生成器表达式微调配置和编译
- 第6章 生成源码
- 6.1 配置时生成源码
- 6.2 使用Python在配置时生成源码
- 6.3 构建时使用Python生成源码
- 6.4 记录项目版本信息以便报告
- 6.5 从文件中记录项目版本
- 6.6 配置时记录Git Hash值
- 6.7 构建时记录Git Hash值
- 第7章 构建项目
- 7.1 使用函数和宏重用代码
- 7.2 将CMake源代码分成模块
- 7.3 编写函数来测试和设置编译器标志
- 7.4 用指定参数定义函数或宏
- 7.5 重新定义函数和宏
- 7.6 使用废弃函数、宏和变量
- 7.7 add_subdirectory的限定范围
- 7.8 使用target_sources避免全局变量
- 7.9 组织Fortran项目
- 第8章 超级构建模式
- 8.1 使用超级构建模式
- 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
- 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
- 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
- 8.5 使用超级构建支持项目
- 第9章 语言混合项目
- 9.1 使用C/C++库构建Fortran项目
- 9.2 使用Fortran库构建C/C++项目
- 9.3 使用Cython构建C++和Python项目
- 9.4 使用Boost.Python构建C++和Python项目
- 9.5 使用pybind11构建C++和Python项目
- 9.6 使用Python CFFI混合C,C++,Fortran和Python
- 第10章 编写安装程序
- 10.1 安装项目
- 10.2 生成输出头文件
- 10.3 输出目标
- 10.4 安装超级构建
- 第11章 打包项目
- 11.1 生成源代码和二进制包
- 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
- 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
- 11.4 以Conda包的形式发布一个简单的项目
- 11.5 将Conda包作为依赖项发布给项目
- 第12章 构建文档
- 12.1 使用Doxygen构建文档
- 12.2 使用Sphinx构建文档
- 12.3 结合Doxygen和Sphinx
- 第13章 选择生成器和交叉编译
- 13.1 使用CMake构建Visual Studio 2017项目
- 13.2 交叉编译hello world示例
- 13.3 使用OpenMP并行化交叉编译Windows二进制文件
- 第14章 测试面板
- 14.1 将测试部署到CDash
- 14.2 CDash显示测试覆盖率
- 14.3 使用AddressSanifier向CDash报告内存缺陷
- 14.4 使用ThreadSaniiser向CDash报告数据争用
- 第15章 使用CMake构建已有项目
- 15.1 如何开始迁移项目
- 15.2 生成文件并编写平台检查
- 15.3 检测所需的链接和依赖关系
- 15.4 复制编译标志
- 15.5 移植测试
- 15.6 移植安装目标
- 15.7 进一步迁移的措施
- 15.8 项目转换为CMake的常见问题
- 第16章 可能感兴趣的书
- 16.1 留下评论——让其他读者知道你的想法