# 7.1 使用函数和宏重用代码
**NOTE**:*此示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-7/recipe-01 中找到,其中包含一个C++例子。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。*
任何编程语言中,函数允许我们抽象(隐藏)细节并避免代码重复,CMake也不例外。本示例中,我们将以宏和函数为例进行讨论,并介绍一个宏,以便方便地定义测试和设置测试的顺序。我们的目标是定义一个宏,能够替换`add_test `和`set_tests_properties`,用于定义每组和设置每个测试的预期开销(第4章,第8节)。
## 准备工作
我们将基于第4章第2节中的例子。`main.cpp`、`sum_integers.cpp`和`sum_integers.hpp`文件不变,用来计算命令行参数提供的整数队列的和。单元测试(`test.cpp`)的源代码也没有改变。我们还需要Catch 2头文件,` catch.hpp `。与第4章相反,我们将把源文件放到子目录中,并形成以下文件树(稍后我们将讨论CMake代码):
```shell
.
├── CMakeLists.txt
├── src
│ ├── CMakeLists.txt
│ ├── main.cpp
│ ├── sum_integers.cpp
│ └── sum_integers.hpp
└── tests
├── catch.hpp
├── CMakeLists.txt
└── test.cpp
```
## 具体实施
1. 定义了CMake最低版本、项目名称和支持的语言,并要求支持C++11标准:
```cmake
cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
project(recipe-01 LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
```
2. 根据GNU标准定义`binary`和`library`路径:
```cmake
include(GNUInstallDirs)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY
${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY
${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY
${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_BINDIR})
```
3. 最后,使用`add_subdirectory`调用`src/CMakeLists.txt`和`tests/CMakeLists.txt`:
```cmake
add_subdirectory(src)
enable_testing()
add_subdirectory(tests)
```
4. `src/CMakeLists.txt`定义了源码目标:
```cmake
set(CMAKE_INCLUDE_CURRENT_DIR_IN_INTERFACE ON)
add_library(sum_integers sum_integers.cpp)
add_executable(sum_up main.cpp)
target_link_libraries(sum_up sum_integers)
```
5. `tests/CMakeLists.txt`中,构建并链接`cpp_test`可执行文件:
```cmake
add_executable(cpp_test test.cpp)
target_link_libraries(cpp_test sum_integers)
```
6. 定义一个新宏`add_catch_test`:
```cmake
macro(add_catch_test _name _cost)
math(EXPR num_macro_calls "${num_macro_calls} + 1")
message(STATUS "add_catch_test called with ${ARGC} arguments: ${ARGV}")
set(_argn "${ARGN}")
if(_argn)
message(STATUS "oops - macro received argument(s) we did not expect: ${ARGN}")
endif()
add_test(
NAME
${_name}
COMMAND
$<TARGET_FILE:cpp_test>
[${_name}] --success --out
${PROJECT_BINARY_DIR}/tests/${_name}.log --durations yes
WORKING_DIRECTORY
${CMAKE_CURRENT_BINARY_DIR}
)
set_tests_properties(
${_name}
PROPERTIES
COST ${_cost}
)
endmacro()
```
7. 最后,使用`add_catch_test`定义了两个测试。此外,还设置和打印了变量的值:
```cmake
set(num_macro_calls 0)
add_catch_test(short 1.5)
add_catch_test(long 2.5 extra_argument)
message(STATUS "in total there were ${num_macro_calls} calls to add_catch_test")
```
8. 现在,进行测试。配置项目(输出行如下所示):
```cmake
$ mkdir -p build
$ cd build
$ cmake ..
-- ...
-- add_catch_test called with 2 arguments: short;1.5
-- add_catch_test called with 3 arguments: long;2.5;extra_argument
-- oops - macro received argument(s) we did not expect: extra_argument
-- in total there were 2 calls to add_catch_test
-- ...
```
9. 最后,构建并运行测试:
```shell
$ cmake --build .
$ ctest
```
10. 长时间的测试会先开始:
```shell
Start 2: long
1/2 Test #2: long ............................. Passed 0.00 sec
Start 1: short
2/2 Test #1: short ............................ Passed 0.00 sec
100% tests passed, 0 tests failed out of 2
```
## 工作原理
这个配置中的新添加了`add_catch_test`宏。这个宏需要两个参数`_name`和`_cost`,可以在宏中使用这些参数来调用`add_test`和`set_tests_properties`。参数前面的下划线,是为了向读者表明这些参数只能在宏中访问。另外,宏自动填充了`${ARGC}`(参数数量)和`${ARGV}`(参数列表),我们可以在输出中验证了这一点:
```shell
-- add_catch_test called with 2 arguments: short;1.5
-- add_catch_test called with 3 arguments: long;2.5;extra_argument
```
宏还定义了`${ARGN}`,用于保存最后一个参数之后的参数列表。此外,我们还可以使用`${ARGV0}`、`${ARGV1}`等来处理参数。我们演示一下,如何捕捉到调用中的额外参数(`extra_argument`):
```camek
add_catch_test(long 2.5 extra_argument)
```
我们使用了以下方法:
```cmake
set(_argn "${ARGN}")
if(_argn)
message(STATUS "oops - macro received argument(s) we did not expect: ${ARGN}")
endif()
```
这个`if`语句中,我们引入一个新变量,但不能直接查询`ARGN`,因为它不是通常意义上的CMake变量。使用这个宏,我们可以通过它们的名称和命令来定义测试,还可以指示预期的开销,这会让耗时长的测试在耗时短测试之前启动,这要归功于`COST`属性。
我们可以用一个函数来实现它,而不是使用相同语法的宏:
```cmake
function(add_catch_test _name _cost)
...
endfunction()
```
宏和函数之间的区别在于它们的变量范围。宏在调用者的范围内执行,而函数有自己的变量范围。换句话说,如果我们使用宏,需要设置或修改对调用者可用的变量。如果不去设置或修改输出变量,最好使用函数。我们注意到,可以在函数中修改父作用域变量,但这必须使用`PARENT_SCOPE`显式表示:
```cmake
set(variable_visible_outside "some value" PARENT_SCOPE)
```
为了演示作用域,我们在定义宏之后编写了以下调用:
```cmake
set(num_macro_calls 0)
add_catch_test(short 1.5)
add_catch_test(long 2.5 extra_argument)
message(STATUS "in total there were ${num_macro_calls} calls to add_catch_test")
```
在宏内部,将`num_macro_calls`加1:
```cmake
math(EXPR num_macro_calls "${num_macro_calls} + 1")
```
这时产生的输出:
```cmake
-- in total there were 2 calls to add_catch_test
```
如果我们将宏更改为函数,测试仍然可以工作,但是`num_macro_calls`在父范围内的所有调用中始终为0。将CMake宏想象成类似函数是很有用的,这些函数被直接替换到它们被调用的地方(在C语言中内联)。将CMake函数想象成黑盒函数很有必要。黑盒中,除非显式地将其定义为`PARENT_SCOPE`,否则不会返回任何内容。CMake中的函数没有返回值。
## 更多信息
可以在宏中嵌套函数调用,也可以在函数中嵌套宏调用,但是这就需要仔细考虑变量的作用范围。如果功能可以使用函数实现,那么这可能比宏更好,因为它对父范围状态提供了更多的默认控制。
我们还应该提到在`src/cmakelist .txt`中使用`CMAKE_INCLUDE_CURRENT_DIR_IN_INTERFACE`:
```cmake
set(CMAKE_INCLUDE_CURRENT_DIR_IN_INTERFACE ON)
```
这个命令会将当前目录,添加到`CMakeLists.txt`中定义的所有目标的`interface_include_directory`属性中。换句话说,我们不需要使用`target_include_directory`来添加`cpp_test`所需头文件的位置。
- Introduction
- 前言
- 第0章 配置环境
- 0.1 获取代码
- 0.2 Docker镜像
- 0.3 安装必要的软件
- 0.4 测试环境
- 0.5 上报问题并提出改进建议
- 第1章 从可执行文件到库
- 1.1 将单个源文件编译为可执行文件
- 1.2 切换生成器
- 1.3 构建和链接静态库和动态库
- 1.4 用条件句控制编译
- 1.5 向用户显示选项
- 1.6 指定编译器
- 1.7 切换构建类型
- 1.8 设置编译器选项
- 1.9 为语言设定标准
- 1.10 使用控制流
- 第2章 检测环境
- 2.1 检测操作系统
- 2.2 处理与平台相关的源代码
- 2.3 处理与编译器相关的源代码
- 2.4 检测处理器体系结构
- 2.5 检测处理器指令集
- 2.6 为Eigen库使能向量化
- 第3章 检测外部库和程序
- 3.1 检测Python解释器
- 3.2 检测Python库
- 3.3 检测Python模块和包
- 3.4 检测BLAS和LAPACK数学库
- 3.5 检测OpenMP的并行环境
- 3.6 检测MPI的并行环境
- 3.7 检测Eigen库
- 3.8 检测Boost库
- 3.9 检测外部库:Ⅰ. 使用pkg-config
- 3.10 检测外部库:Ⅱ. 自定义find模块
- 第4章 创建和运行测试
- 4.1 创建一个简单的单元测试
- 4.2 使用Catch2库进行单元测试
- 4.3 使用Google Test库进行单元测试
- 4.4 使用Boost Test进行单元测试
- 4.5 使用动态分析来检测内存缺陷
- 4.6 预期测试失败
- 4.7 使用超时测试运行时间过长的测试
- 4.8 并行测试
- 4.9 运行测试子集
- 4.10 使用测试固件
- 第5章 配置时和构建时的操作
- 5.1 使用平台无关的文件操作
- 5.2 配置时运行自定义命令
- 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
- 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
- 5.5 构建时为特定目标运行自定义命令
- 5.6 探究编译和链接命令
- 5.7 探究编译器标志命令
- 5.8 探究可执行命令
- 5.9 使用生成器表达式微调配置和编译
- 第6章 生成源码
- 6.1 配置时生成源码
- 6.2 使用Python在配置时生成源码
- 6.3 构建时使用Python生成源码
- 6.4 记录项目版本信息以便报告
- 6.5 从文件中记录项目版本
- 6.6 配置时记录Git Hash值
- 6.7 构建时记录Git Hash值
- 第7章 构建项目
- 7.1 使用函数和宏重用代码
- 7.2 将CMake源代码分成模块
- 7.3 编写函数来测试和设置编译器标志
- 7.4 用指定参数定义函数或宏
- 7.5 重新定义函数和宏
- 7.6 使用废弃函数、宏和变量
- 7.7 add_subdirectory的限定范围
- 7.8 使用target_sources避免全局变量
- 7.9 组织Fortran项目
- 第8章 超级构建模式
- 8.1 使用超级构建模式
- 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
- 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
- 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
- 8.5 使用超级构建支持项目
- 第9章 语言混合项目
- 9.1 使用C/C++库构建Fortran项目
- 9.2 使用Fortran库构建C/C++项目
- 9.3 使用Cython构建C++和Python项目
- 9.4 使用Boost.Python构建C++和Python项目
- 9.5 使用pybind11构建C++和Python项目
- 9.6 使用Python CFFI混合C,C++,Fortran和Python
- 第10章 编写安装程序
- 10.1 安装项目
- 10.2 生成输出头文件
- 10.3 输出目标
- 10.4 安装超级构建
- 第11章 打包项目
- 11.1 生成源代码和二进制包
- 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
- 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
- 11.4 以Conda包的形式发布一个简单的项目
- 11.5 将Conda包作为依赖项发布给项目
- 第12章 构建文档
- 12.1 使用Doxygen构建文档
- 12.2 使用Sphinx构建文档
- 12.3 结合Doxygen和Sphinx
- 第13章 选择生成器和交叉编译
- 13.1 使用CMake构建Visual Studio 2017项目
- 13.2 交叉编译hello world示例
- 13.3 使用OpenMP并行化交叉编译Windows二进制文件
- 第14章 测试面板
- 14.1 将测试部署到CDash
- 14.2 CDash显示测试覆盖率
- 14.3 使用AddressSanifier向CDash报告内存缺陷
- 14.4 使用ThreadSaniiser向CDash报告数据争用
- 第15章 使用CMake构建已有项目
- 15.1 如何开始迁移项目
- 15.2 生成文件并编写平台检查
- 15.3 检测所需的链接和依赖关系
- 15.4 复制编译标志
- 15.5 移植测试
- 15.6 移植安装目标
- 15.7 进一步迁移的措施
- 15.8 项目转换为CMake的常见问题
- 第16章 可能感兴趣的书
- 16.1 留下评论——让其他读者知道你的想法