# 6.4 记录项目版本信息以便报告
**NOTE**:*此示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-6/recipe-04 中找到,其中包含一个C和Fortran例子。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。*
代码版本很重要,不仅是为了可重复性,还为了记录API功能或简化支持请求和bug报告。源代码通常处于某种版本控制之下,例如:可以使用Git标记附加额外版本号(参见https://semver.org )。然而,不仅需要对源代码进行版本控制,而且可执行文件还需要记录项目版本,以便将其打印到代码输出或用户界面上。
本例中,将在CMake源文件中定义版本号。我们的目标是在配置项目时将程序版本记录到头文件中。然后,生成的头文件可以包含在代码的正确位置和时间,以便将代码版本打印到输出文件或屏幕上。
## 准备工作
将使用以下C文件(`example.c`)打印版本信息:
```c++
#include "version.h"
#include <stdio.h>
int main() {
printf("This is output from code %s\n", PROJECT_VERSION);
printf("Major version number: %i\n", PROJECT_VERSION_MAJOR);
printf("Minor version number: %i\n", PROJECT_VERSION_MINOR);
printf("Hello CMake world!\n");
}
```
这里,假设`PROJECT_VERSION_MAJOR`、`PROJECT_VERSION_MINOR`和`PROJECT_VERSION`是在`version.h`中定义的。目标是从以下模板中生成`version.h.in`:
```c++
#pragma once
#define PROJECT_VERSION_MAJOR @PROJECT_VERSION_MAJOR@
#define PROJECT_VERSION_MINOR @PROJECT_VERSION_MINOR@
#define PROJECT_VERSION_PATCH @PROJECT_VERSION_PATCH@
#define PROJECT_VERSION "v@PROJECT_VERSION@"
```
这里使用预处理器定义,也可以使用字符串或整数常量来提高类型安全性(稍后我们将对此进行演示)。从CMake的角度来看,这两种方法是相同的。
## 如何实施
我们将按照以下步骤,在模板头文件中对版本进行注册:
1. 要跟踪代码版本,我们可以在CMakeLists.txt中调用CMake的`project`时定义项目版本:
```cmake
cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
project(recipe-04 VERSION 2.0.1 LANGUAGES C)
```
2. 然后,基于`version.h.in`生成`version.h`:
```cmake
configure_file(
version.h.in
generated/version.h
@ONLY
)
```
3. 最后,我们定义了可执行文件,并提供了目标包含路径:
```cmake
add_executable(example example.c)
target_include_directories(example
PRIVATE
${CMAKE_CURRENT_BINARY_DIR}/generated
)
```
## 工作原理
当使用版本参数调用CMake的`project`时,CMake将为项目设置`PROJECT_VERSION_MAJOR`、`PROJECT_VERSION_MINOR`和`PROJECT_VERSION_PATCH`。此示例中的关键命令是`configure_file`,它接受一个输入文件(本例中是`version.h.in`),通过将`@`之间的占位符替换成对应的CMake变量,生成一个输出文件(本例中是`generate/version.h`)。它将`@PROJECT_VERSION_MAJOR@`替换为2,以此类推。使用关键字`@ONLY`,我们将`configure_file`限制为只替换`@variables@`,而不修改`${variables}`。后一种形式在`version.h.in`中没有使用。但是,当使用CMake配置shell脚本时,会经常出现。
生成的头文件可以包含在示例代码中,可以打印版本信息:
```shell
$ mkdir -p build
$ cd build
$ cmake ..
$ cmake --build .
$ ./example
This is output from code v2.0.1
Major version number: 2
Minor version number: 0
Hello CMake world!
```
**NOTE**:*CMake以`x.y.z`格式给出的版本号,并将变量`PROJECT_VERSION`和` <project-name>_VERSION`设置为给定的值。此外,`PROJECT_VERSION_MAJOR`(`<project-name>_VERSION_MAJOR`),`PROJECT_VERSION_MINOR`(`<project-name>_VERSION_MINOR`) `PROJECT_VERSION_PATCH`(`<project-name>_VERSION_PATCH`)和`PROJECT_VERSION_TWEAK`(`<project-name>_VERSION_TWEAK`),将分别设置为`X`, `Y`, `Z`和`t`。*
## 更多信息
为了确保只有当CMake变量被认为是一个真正的常量时,才定义预处理器变量,可以使用`configure_file`,在配置的头文件中使用`#cmakedefin`而不是`#define`。
根据是否定义了CMake变量并将其计算为一个真正的常量,`#cmakedefine YOUR_VARIABLE`将被替换为`#define YOUR_VARIABLE …`或者`/* #undef YOUR_VARIABLE */`。还有`#cmakedefine01`,将根据变量是否定义,将变量设置为`0`或`1`。
- Introduction
- 前言
- 第0章 配置环境
- 0.1 获取代码
- 0.2 Docker镜像
- 0.3 安装必要的软件
- 0.4 测试环境
- 0.5 上报问题并提出改进建议
- 第1章 从可执行文件到库
- 1.1 将单个源文件编译为可执行文件
- 1.2 切换生成器
- 1.3 构建和链接静态库和动态库
- 1.4 用条件句控制编译
- 1.5 向用户显示选项
- 1.6 指定编译器
- 1.7 切换构建类型
- 1.8 设置编译器选项
- 1.9 为语言设定标准
- 1.10 使用控制流
- 第2章 检测环境
- 2.1 检测操作系统
- 2.2 处理与平台相关的源代码
- 2.3 处理与编译器相关的源代码
- 2.4 检测处理器体系结构
- 2.5 检测处理器指令集
- 2.6 为Eigen库使能向量化
- 第3章 检测外部库和程序
- 3.1 检测Python解释器
- 3.2 检测Python库
- 3.3 检测Python模块和包
- 3.4 检测BLAS和LAPACK数学库
- 3.5 检测OpenMP的并行环境
- 3.6 检测MPI的并行环境
- 3.7 检测Eigen库
- 3.8 检测Boost库
- 3.9 检测外部库:Ⅰ. 使用pkg-config
- 3.10 检测外部库:Ⅱ. 自定义find模块
- 第4章 创建和运行测试
- 4.1 创建一个简单的单元测试
- 4.2 使用Catch2库进行单元测试
- 4.3 使用Google Test库进行单元测试
- 4.4 使用Boost Test进行单元测试
- 4.5 使用动态分析来检测内存缺陷
- 4.6 预期测试失败
- 4.7 使用超时测试运行时间过长的测试
- 4.8 并行测试
- 4.9 运行测试子集
- 4.10 使用测试固件
- 第5章 配置时和构建时的操作
- 5.1 使用平台无关的文件操作
- 5.2 配置时运行自定义命令
- 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
- 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
- 5.5 构建时为特定目标运行自定义命令
- 5.6 探究编译和链接命令
- 5.7 探究编译器标志命令
- 5.8 探究可执行命令
- 5.9 使用生成器表达式微调配置和编译
- 第6章 生成源码
- 6.1 配置时生成源码
- 6.2 使用Python在配置时生成源码
- 6.3 构建时使用Python生成源码
- 6.4 记录项目版本信息以便报告
- 6.5 从文件中记录项目版本
- 6.6 配置时记录Git Hash值
- 6.7 构建时记录Git Hash值
- 第7章 构建项目
- 7.1 使用函数和宏重用代码
- 7.2 将CMake源代码分成模块
- 7.3 编写函数来测试和设置编译器标志
- 7.4 用指定参数定义函数或宏
- 7.5 重新定义函数和宏
- 7.6 使用废弃函数、宏和变量
- 7.7 add_subdirectory的限定范围
- 7.8 使用target_sources避免全局变量
- 7.9 组织Fortran项目
- 第8章 超级构建模式
- 8.1 使用超级构建模式
- 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
- 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
- 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
- 8.5 使用超级构建支持项目
- 第9章 语言混合项目
- 9.1 使用C/C++库构建Fortran项目
- 9.2 使用Fortran库构建C/C++项目
- 9.3 使用Cython构建C++和Python项目
- 9.4 使用Boost.Python构建C++和Python项目
- 9.5 使用pybind11构建C++和Python项目
- 9.6 使用Python CFFI混合C,C++,Fortran和Python
- 第10章 编写安装程序
- 10.1 安装项目
- 10.2 生成输出头文件
- 10.3 输出目标
- 10.4 安装超级构建
- 第11章 打包项目
- 11.1 生成源代码和二进制包
- 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
- 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
- 11.4 以Conda包的形式发布一个简单的项目
- 11.5 将Conda包作为依赖项发布给项目
- 第12章 构建文档
- 12.1 使用Doxygen构建文档
- 12.2 使用Sphinx构建文档
- 12.3 结合Doxygen和Sphinx
- 第13章 选择生成器和交叉编译
- 13.1 使用CMake构建Visual Studio 2017项目
- 13.2 交叉编译hello world示例
- 13.3 使用OpenMP并行化交叉编译Windows二进制文件
- 第14章 测试面板
- 14.1 将测试部署到CDash
- 14.2 CDash显示测试覆盖率
- 14.3 使用AddressSanifier向CDash报告内存缺陷
- 14.4 使用ThreadSaniiser向CDash报告数据争用
- 第15章 使用CMake构建已有项目
- 15.1 如何开始迁移项目
- 15.2 生成文件并编写平台检查
- 15.3 检测所需的链接和依赖关系
- 15.4 复制编译标志
- 15.5 移植测试
- 15.6 移植安装目标
- 15.7 进一步迁移的措施
- 15.8 项目转换为CMake的常见问题
- 第16章 可能感兴趣的书
- 16.1 留下评论——让其他读者知道你的想法