# 2.6 为Eigen库使能向量化
**NOTE**:*此示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-02/recipe-06 中找到,包含一个C++示例。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。*
处理器的向量功能,可以提高代码的性能。对于某些类型的运算来说尤为甚之,例如:线性代数。本示例将展示如何使能矢量化,以便使用线性代数的Eigen C++库加速可执行文件。
## 准备工作
我们用Eigen C++模板库,用来进行线性代数计算,并展示如何设置编译器标志来启用向量化。这个示例的源代码`linear-algebra.cpp`文件:
```c++
#include <chrono>
#include <iostream>
#include <Eigen/Dense>
EIGEN_DONT_INLINE
double simple_function(Eigen::VectorXd &va, Eigen::VectorXd &vb)
{
// this simple function computes the dot product of two vectors
// of course it could be expressed more compactly
double d = va.dot(vb);
return d;
}
int main()
{
int len = 1000000;
int num_repetitions = 100;
// generate two random vectors
Eigen::VectorXd va = Eigen::VectorXd::Random(len);
Eigen::VectorXd vb = Eigen::VectorXd::Random(len);
double result;
auto start = std::chrono::system_clock::now();
for (auto i = 0; i < num_repetitions; i++)
{
result = simple_function(va, vb);
}
auto end = std::chrono::system_clock::now();
auto elapsed_seconds = end - start;
std::cout << "result: " << result << std::endl;
std::cout << "elapsed seconds: " << elapsed_seconds.count() << std::endl;
}
```
我们期望向量化可以加快`simple_function`中的点积操作。
## 如何实施
根据Eigen库的文档,设置适当的编译器标志就足以生成向量化的代码。让我们看看`CMakeLists.txt`:
1. 声明一个`C++11`项目:
```cmake
cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
project(recipe-06 LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
```
2. 使用Eigen库,我们需要在系统上找到它的头文件:
```cmake
find_package(Eigen3 3.3 REQUIRED CONFIG)
```
3. `CheckCXXCompilerFlag.cmake`标准模块文件:
```cmake
include(CheckCXXCompilerFlag)
```
4. 检查` -march=native `编译器标志是否工作:
```cmake
check_cxx_compiler_flag("-march=native" _march_native_works)
```
5. 另一个选项`-xHost`编译器标志也开启:
```cmake
check_cxx_compiler_flag("-xHost" _xhost_works)
```
6. 设置了一个空变量`_CXX_FLAGS`,来保存刚才检查的两个编译器中找到的编译器标志。如果看到`_march_native_works`,我们将`_CXX_FLAGS`设置为`-march=native`。如果看到`_xhost_works`,我们将`_CXX_FLAGS`设置为`-xHost`。如果它们都不起作用,`_CXX_FLAGS`将为空,并禁用矢量化:
```cmake
set(_CXX_FLAGS)
if(_march_native_works)
message(STATUS "Using processor's vector instructions (-march=native compiler flag set)")
set(_CXX_FLAGS "-march=native")
elseif(_xhost_works)
message(STATUS "Using processor's vector instructions (-xHost compiler flag set)")
set(_CXX_FLAGS "-xHost")
else()
message(STATUS "No suitable compiler flag found for vectorization")
endif()
```
7. 为了便于比较,我们还为未优化的版本定义了一个可执行目标,不使用优化标志:
```cmake
add_executable(linear-algebra-unoptimized linear-algebra.cpp)
target_link_libraries(linear-algebra-unoptimized
PRIVATE
Eigen3::Eigen
)
```
8. 此外,我们定义了一个优化版本:
```cmake
add_executable(linear-algebra linear-algebra.cpp)
target_compile_options(linear-algebra
PRIVATE
${_CXX_FLAGS}
)
target_link_libraries(linear-algebra
PRIVATE
Eigen3::Eigen
)
```
9. 让我们比较一下这两个可执行文件——首先我们配置(在本例中,`-march=native_works`):
```shell
$ mkdir -p build
$ cd build
$ cmake ..
...
-- Performing Test _march_native_works
-- Performing Test _march_native_works - Success
-- Performing Test _xhost_works
-- Performing Test _xhost_works - Failed
-- Using processor's vector instructions (-march=native compiler flag set)
...
```
10. 最后,让我们编译可执行文件,并比较运行时间:
```shell
$ cmake --build .
$ ./linear-algebra-unoptimized
result: -261.505
elapsed seconds: 1.97964
$ ./linear-algebra
result: -261.505
elapsed seconds: 1.05048
```
## 工作原理
大多数处理器提供向量指令集,代码可以利用这些特性,获得更高的性能。由于线性代数运算可以从Eigen库中获得很好的加速,所以在使用Eigen库时,就要考虑向量化。我们所要做的就是,指示编译器为我们检查处理器,并为当前体系结构生成本机指令。不同的编译器供应商会使用不同的标志来实现这一点:GNU编译器使用`-march=native`标志来实现这一点,而Intel编译器使用`-xHost`标志。使用` CheckCXXCompilerFlag.cmake`模块提供的`check_cxx_compiler_flag`函数进行编译器标志的检查:
`check_cxx_compiler_flag("-march=native" _march_native_works)`
这个函数接受两个参数:
* 第一个是要检查的编译器标志。
* 第二个是用来存储检查结果(true或false)的变量。如果检查为真,我们将工作标志添加到`_CXX_FLAGS`变量中,该变量将用于为可执行目标设置编译器标志。
## 更多信息
本示例可与前一示例相结合,可以使用`cmake_host_system_information`查询处理器功能。
- Introduction
- 前言
- 第0章 配置环境
- 0.1 获取代码
- 0.2 Docker镜像
- 0.3 安装必要的软件
- 0.4 测试环境
- 0.5 上报问题并提出改进建议
- 第1章 从可执行文件到库
- 1.1 将单个源文件编译为可执行文件
- 1.2 切换生成器
- 1.3 构建和链接静态库和动态库
- 1.4 用条件句控制编译
- 1.5 向用户显示选项
- 1.6 指定编译器
- 1.7 切换构建类型
- 1.8 设置编译器选项
- 1.9 为语言设定标准
- 1.10 使用控制流
- 第2章 检测环境
- 2.1 检测操作系统
- 2.2 处理与平台相关的源代码
- 2.3 处理与编译器相关的源代码
- 2.4 检测处理器体系结构
- 2.5 检测处理器指令集
- 2.6 为Eigen库使能向量化
- 第3章 检测外部库和程序
- 3.1 检测Python解释器
- 3.2 检测Python库
- 3.3 检测Python模块和包
- 3.4 检测BLAS和LAPACK数学库
- 3.5 检测OpenMP的并行环境
- 3.6 检测MPI的并行环境
- 3.7 检测Eigen库
- 3.8 检测Boost库
- 3.9 检测外部库:Ⅰ. 使用pkg-config
- 3.10 检测外部库:Ⅱ. 自定义find模块
- 第4章 创建和运行测试
- 4.1 创建一个简单的单元测试
- 4.2 使用Catch2库进行单元测试
- 4.3 使用Google Test库进行单元测试
- 4.4 使用Boost Test进行单元测试
- 4.5 使用动态分析来检测内存缺陷
- 4.6 预期测试失败
- 4.7 使用超时测试运行时间过长的测试
- 4.8 并行测试
- 4.9 运行测试子集
- 4.10 使用测试固件
- 第5章 配置时和构建时的操作
- 5.1 使用平台无关的文件操作
- 5.2 配置时运行自定义命令
- 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
- 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
- 5.5 构建时为特定目标运行自定义命令
- 5.6 探究编译和链接命令
- 5.7 探究编译器标志命令
- 5.8 探究可执行命令
- 5.9 使用生成器表达式微调配置和编译
- 第6章 生成源码
- 6.1 配置时生成源码
- 6.2 使用Python在配置时生成源码
- 6.3 构建时使用Python生成源码
- 6.4 记录项目版本信息以便报告
- 6.5 从文件中记录项目版本
- 6.6 配置时记录Git Hash值
- 6.7 构建时记录Git Hash值
- 第7章 构建项目
- 7.1 使用函数和宏重用代码
- 7.2 将CMake源代码分成模块
- 7.3 编写函数来测试和设置编译器标志
- 7.4 用指定参数定义函数或宏
- 7.5 重新定义函数和宏
- 7.6 使用废弃函数、宏和变量
- 7.7 add_subdirectory的限定范围
- 7.8 使用target_sources避免全局变量
- 7.9 组织Fortran项目
- 第8章 超级构建模式
- 8.1 使用超级构建模式
- 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
- 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
- 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
- 8.5 使用超级构建支持项目
- 第9章 语言混合项目
- 9.1 使用C/C++库构建Fortran项目
- 9.2 使用Fortran库构建C/C++项目
- 9.3 使用Cython构建C++和Python项目
- 9.4 使用Boost.Python构建C++和Python项目
- 9.5 使用pybind11构建C++和Python项目
- 9.6 使用Python CFFI混合C,C++,Fortran和Python
- 第10章 编写安装程序
- 10.1 安装项目
- 10.2 生成输出头文件
- 10.3 输出目标
- 10.4 安装超级构建
- 第11章 打包项目
- 11.1 生成源代码和二进制包
- 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
- 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
- 11.4 以Conda包的形式发布一个简单的项目
- 11.5 将Conda包作为依赖项发布给项目
- 第12章 构建文档
- 12.1 使用Doxygen构建文档
- 12.2 使用Sphinx构建文档
- 12.3 结合Doxygen和Sphinx
- 第13章 选择生成器和交叉编译
- 13.1 使用CMake构建Visual Studio 2017项目
- 13.2 交叉编译hello world示例
- 13.3 使用OpenMP并行化交叉编译Windows二进制文件
- 第14章 测试面板
- 14.1 将测试部署到CDash
- 14.2 CDash显示测试覆盖率
- 14.3 使用AddressSanifier向CDash报告内存缺陷
- 14.4 使用ThreadSaniiser向CDash报告数据争用
- 第15章 使用CMake构建已有项目
- 15.1 如何开始迁移项目
- 15.2 生成文件并编写平台检查
- 15.3 检测所需的链接和依赖关系
- 15.4 复制编译标志
- 15.5 移植测试
- 15.6 移植安装目标
- 15.7 进一步迁移的措施
- 15.8 项目转换为CMake的常见问题
- 第16章 可能感兴趣的书
- 16.1 留下评论——让其他读者知道你的想法