# 3.1 检测Python解释器
**NOTE**:*此示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-03/recipe-01 中找到。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。*
Python是一种非常流行的语言。许多项目用Python编写的工具,从而将主程序和库打包在一起,或者在配置或构建过程中使用Python脚本。这种情况下,确保运行时对Python解释器的依赖也需要得到满足。本示例将展示如何检测和使用Python解释器。
我们将介绍`find_package`命令,这个命令将贯穿本章。
## 具体实施
我们将逐步建立`CMakeLists.txt`文件:
1. 首先,定义CMake最低版本和项目名称。注意,这里不需要任何语言支持:
```cmake
cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
project(recipe-01 LANGUAGES NONE)
```
2. 然后,使用`find_package`命令找到Python解释器:
```cmake
find_package(PythonInterp REQUIRED)
```
3. 然后,执行Python命令并捕获它的输出和返回值:
```cmake
execute_process(
COMMAND
${PYTHON_EXECUTABLE} "-c" "print('Hello, world!')"
RESULT_VARIABLE _status
OUTPUT_VARIABLE _hello_world
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE
)
```
4. 最后,打印Python命令的返回值和输出:
```cmake
message(STATUS "RESULT_VARIABLE is: ${_status}")
message(STATUS "OUTPUT_VARIABLE is: ${_hello_world}")
```
5. 配置项目:
```shell
$ mkdir -p build
$ cd build
$ cmake ..
-- Found PythonInterp: /usr/bin/python (found version "3.6.5")
-- RESULT_VARIABLE is: 0
-- OUTPUT_VARIABLE is: Hello, world!
-- Configuring done
-- Generating done
-- Build files have been written to: /home/user/cmake-cookbook/chapter-03/recipe-01/example/build
```
## 工作原理
`find_package`是用于发现和设置包的CMake模块的命令。这些模块包含CMake命令,用于标识系统标准位置中的包。CMake模块文件称为` Find<name>.cmake`,当调用`find_package(<name>)`时,模块中的命令将会运行。
除了在系统上实际查找包模块之外,查找模块还会设置了一些有用的变量,反映实际找到了什么,也可以在自己的`CMakeLists.txt`中使用这些变量。对于Python解释器,相关模块为`FindPythonInterp.cmake`附带的设置了一些CMake变量:
* **PYTHONINTERP_FOUND**:是否找到解释器
* **PYTHON_EXECUTABLE**:Python解释器到可执行文件的路径
* **PYTHON_VERSION_STRING**:Python解释器的完整版本信息
* **PYTHON_VERSION_MAJOR**:Python解释器的主要版本号
* **PYTHON_VERSION_MINOR** :Python解释器的次要版本号
* **PYTHON_VERSION_PATCH**:Python解释器的补丁版本号
可以强制CMake,查找特定版本的包。例如,要求Python解释器的版本大于或等于2.7:`find_package(PythonInterp 2.7)`
可以强制满足依赖关系:
```cmake
find_package(PythonInterp REQUIRED)
```
如果在查找位置中没有找到适合Python解释器的可执行文件,CMake将中止配置。
**TIPS**:*CMake有很多查找软件包的模块。我们建议在CMake在线文档中查询`Find<package>.cmake`模块,并在使用它们之前详细阅读它们的文档。`find_package`命令的文档可以参考 https://cmake.org/cmake/help/v3.5/command/find_ackage.html 。在线文档的一个很好的替代方法是浏览 https://github.com/Kitware/CMake/tree/master/Modules 中的CMake模块源代码——它们记录了模块使用的变量,以及模块可以在`CMakeLists.txt`中使用的变量。*
## 更多信息
软件包没有安装在标准位置时,CMake无法正确定位它们。用户可以使用CLI的`-D`参数传递相应的选项,告诉CMake查看特定的位置。Python解释器可以使用以下配置:
```shell
$ cmake -D PYTHON_EXECUTABLE=/custom/location/python ..
```
这将指定非标准`/custom/location/python`安装目录中的Python可执行文件。
**NOTE**:*每个包都是不同的,`Find<package>.cmake`模块试图提供统一的检测接口。当CMake无法找到模块包时,我们建议您阅读相应检测模块的文档,以了解如何正确地使用CMake模块。可以在终端中直接浏览文档,本例中可使用`cmake --help-module FindPythonInterp`查看。*
除了检测包之外,我们还想提到一个便于打印变量的helper模块。本示例中,我们使用了以下方法:
```cmake
message(STATUS "RESULT_VARIABLE is: ${_status}")
message(STATUS "OUTPUT_VARIABLE is: ${_hello_world}")
```
使用以下工具进行调试:
```cmake
include(CMakePrintHelpers)
cmake_print_variables(_status _hello_world)
```
将产生以下输出:
```shell
-- _status="0" ; _hello_world="Hello, world!"
```
有关打印属性和变量的更多信息,请参考 https://cmake.org/cmake/help/v3.5/module/CMakePrintHelpers.html 。
- Introduction
- 前言
- 第0章 配置环境
- 0.1 获取代码
- 0.2 Docker镜像
- 0.3 安装必要的软件
- 0.4 测试环境
- 0.5 上报问题并提出改进建议
- 第1章 从可执行文件到库
- 1.1 将单个源文件编译为可执行文件
- 1.2 切换生成器
- 1.3 构建和链接静态库和动态库
- 1.4 用条件句控制编译
- 1.5 向用户显示选项
- 1.6 指定编译器
- 1.7 切换构建类型
- 1.8 设置编译器选项
- 1.9 为语言设定标准
- 1.10 使用控制流
- 第2章 检测环境
- 2.1 检测操作系统
- 2.2 处理与平台相关的源代码
- 2.3 处理与编译器相关的源代码
- 2.4 检测处理器体系结构
- 2.5 检测处理器指令集
- 2.6 为Eigen库使能向量化
- 第3章 检测外部库和程序
- 3.1 检测Python解释器
- 3.2 检测Python库
- 3.3 检测Python模块和包
- 3.4 检测BLAS和LAPACK数学库
- 3.5 检测OpenMP的并行环境
- 3.6 检测MPI的并行环境
- 3.7 检测Eigen库
- 3.8 检测Boost库
- 3.9 检测外部库:Ⅰ. 使用pkg-config
- 3.10 检测外部库:Ⅱ. 自定义find模块
- 第4章 创建和运行测试
- 4.1 创建一个简单的单元测试
- 4.2 使用Catch2库进行单元测试
- 4.3 使用Google Test库进行单元测试
- 4.4 使用Boost Test进行单元测试
- 4.5 使用动态分析来检测内存缺陷
- 4.6 预期测试失败
- 4.7 使用超时测试运行时间过长的测试
- 4.8 并行测试
- 4.9 运行测试子集
- 4.10 使用测试固件
- 第5章 配置时和构建时的操作
- 5.1 使用平台无关的文件操作
- 5.2 配置时运行自定义命令
- 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
- 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
- 5.5 构建时为特定目标运行自定义命令
- 5.6 探究编译和链接命令
- 5.7 探究编译器标志命令
- 5.8 探究可执行命令
- 5.9 使用生成器表达式微调配置和编译
- 第6章 生成源码
- 6.1 配置时生成源码
- 6.2 使用Python在配置时生成源码
- 6.3 构建时使用Python生成源码
- 6.4 记录项目版本信息以便报告
- 6.5 从文件中记录项目版本
- 6.6 配置时记录Git Hash值
- 6.7 构建时记录Git Hash值
- 第7章 构建项目
- 7.1 使用函数和宏重用代码
- 7.2 将CMake源代码分成模块
- 7.3 编写函数来测试和设置编译器标志
- 7.4 用指定参数定义函数或宏
- 7.5 重新定义函数和宏
- 7.6 使用废弃函数、宏和变量
- 7.7 add_subdirectory的限定范围
- 7.8 使用target_sources避免全局变量
- 7.9 组织Fortran项目
- 第8章 超级构建模式
- 8.1 使用超级构建模式
- 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
- 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
- 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
- 8.5 使用超级构建支持项目
- 第9章 语言混合项目
- 9.1 使用C/C++库构建Fortran项目
- 9.2 使用Fortran库构建C/C++项目
- 9.3 使用Cython构建C++和Python项目
- 9.4 使用Boost.Python构建C++和Python项目
- 9.5 使用pybind11构建C++和Python项目
- 9.6 使用Python CFFI混合C,C++,Fortran和Python
- 第10章 编写安装程序
- 10.1 安装项目
- 10.2 生成输出头文件
- 10.3 输出目标
- 10.4 安装超级构建
- 第11章 打包项目
- 11.1 生成源代码和二进制包
- 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
- 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
- 11.4 以Conda包的形式发布一个简单的项目
- 11.5 将Conda包作为依赖项发布给项目
- 第12章 构建文档
- 12.1 使用Doxygen构建文档
- 12.2 使用Sphinx构建文档
- 12.3 结合Doxygen和Sphinx
- 第13章 选择生成器和交叉编译
- 13.1 使用CMake构建Visual Studio 2017项目
- 13.2 交叉编译hello world示例
- 13.3 使用OpenMP并行化交叉编译Windows二进制文件
- 第14章 测试面板
- 14.1 将测试部署到CDash
- 14.2 CDash显示测试覆盖率
- 14.3 使用AddressSanifier向CDash报告内存缺陷
- 14.4 使用ThreadSaniiser向CDash报告数据争用
- 第15章 使用CMake构建已有项目
- 15.1 如何开始迁移项目
- 15.2 生成文件并编写平台检查
- 15.3 检测所需的链接和依赖关系
- 15.4 复制编译标志
- 15.5 移植测试
- 15.6 移植安装目标
- 15.7 进一步迁移的措施
- 15.8 项目转换为CMake的常见问题
- 第16章 可能感兴趣的书
- 16.1 留下评论——让其他读者知道你的想法