# 2.4 检测处理器体系结构
**NOTE**:*此示例代码可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-02/recipe-04 中找到,包含一个C++示例。该示例在CMake 3.5版(或更高版本)中是有效的,并且已经在GNU/Linux、macOS和Windows上进行过测试。*
19世纪70年代,出现的64位整数运算和本世纪初出现的用于个人计算机的64位寻址,扩大了内存寻址范围,开发商投入了大量资源来移植为32位体系结构硬编码,以支持64位寻址。许多博客文章,如 https://www.viva64.com/en/a/0004/ ,致力于讨论将`C++`代码移植到64位平台中的典型问题和解决方案。虽然,避免显式硬编码的方式非常明智,但需要在使用CMake配置的代码中适应硬编码限制。本示例中,我们会来讨论检测主机处理器体系结构的选项。
## 准备工作
我们以下面的`arch-dependent.cpp`代码为例:
```c++
#include <cstdlib>
#include <iostream>
#include <string>
#define STRINGIFY(x) #x
#define TOSTRING(x) STRINGIFY(x)
std::string say_hello()
{
std::string arch_info(TOSTRING(ARCHITECTURE));
arch_info += std::string(" architecture. ");
#ifdef IS_32_BIT_ARCH
return arch_info + std::string("Compiled on a 32 bit host processor.");
#elif IS_64_BIT_ARCH
return arch_info + std::string("Compiled on a 64 bit host processor.");
#else
return arch_info + std::string("Neither 32 nor 64 bit, puzzling ...");
#endif
}
int main()
{
std::cout << say_hello() << std::endl;
return EXIT_SUCCESS;
}
```
## 具体实施
`CMakeLists.txt`文件中,我们需要以下内容:
1. 首先,定义可执行文件及其源文件依赖关系:
```cmake
cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
project(recipe-04 LANGUAGES CXX)
add_executable(arch-dependent arch-dependent.cpp)
```
2. 检查空指针类型的大小。CMake的`CMAKE_SIZEOF_VOID_P`变量会告诉我们CPU是32位还是64位。我们通过状态消息让用户知道检测到的大小,并设置预处理器定义:
```cmake
if(CMAKE_SIZEOF_VOID_P EQUAL 8)
target_compile_definitions(arch-dependent PUBLIC "IS_64_BIT_ARCH")
message(STATUS "Target is 64 bits")
else()
target_compile_definitions(arch-dependent PUBLIC "IS_32_BIT_ARCH")
message(STATUS "Target is 32 bits")
endif()
```
3. 通过定义以下目标编译定义,让预处理器了解主机处理器架构,同时在配置过程中打印状态消息:
```cmake
if(CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "i386")
message(STATUS "i386 architecture detected")
elseif(CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "i686")
message(STATUS "i686 architecture detected")
elseif(CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "x86_64")
message(STATUS "x86_64 architecture detected")
else()
message(STATUS "host processor architecture is unknown")
endif()
target_compile_definitions(arch-dependent
PUBLIC "ARCHITECTURE=${CMAKE_HOST_SYSTEM_PROCESSOR}"
)
```
4. 配置项目,并注意状态消息(打印出的信息可能会发生变化):
```shell
$ mkdir -p build
$ cd build
$ cmake ..
...
-- Target is 64 bits
-- x86_64 architecture detected
...
```
5. 最后,构建并执行代码(实际输出将取决于处理器架构):
```shell
$ cmake --build .
$ ./arch-dependent
x86_64 architecture. Compiled on a 64 bit host processor.
```
## 工作原理
CMake定义了`CMAKE_HOST_SYSTEM_PROCESSOR`变量,以包含当前运行的处理器的名称。可以设置为“i386”、“i686”、“x86_64”、“AMD64”等等,当然,这取决于当前的CPU。`CMAKE_SIZEOF_VOID_P`为void指针的大小。我们可以在CMake配置时进行查询,以便修改目标或目标编译定义。可以基于检测到的主机处理器体系结构,使用预处理器定义,确定需要编译的分支源代码。正如在前面的示例中所讨论的,编写新代码时应该避免这种依赖,但在处理遗留代码或交叉编译时,这种依赖是有用的,交叉编译会在第13章进行讨论。
**NOTE**:*使用`CMAKE_SIZEOF_VOID_P`是检查当前CPU是否具有32位或64位架构的唯一“真正”可移植的方法。*
## 更多信息
除了`CMAKE_HOST_SYSTEM_PROCESSOR`, CMake还定义了`CMAKE_SYSTEM_PROCESSOR`变量。前者包含当前运行的CPU在CMake的名称,而后者将包含当前正在为其构建的CPU的名称。这是一个细微的差别,在交叉编译时起着非常重要的作用。我们将在第13章,看到更多关于交叉编译的内容。另一种让CMake检测主机处理器体系结构,是使用`C`或`C++中`定义的符号,结合CMake的`try_run`函数,尝试构建执行的源代码(见第5.8节)分支的预处理符号。这将返回已定义错误码,这些错误可以在CMake端捕获(此策略的灵感来自 https://github.com/axr/cmake/blob/master/targetarch.cmake ):
```c++
#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
#error cmake_arch i386
#elif defined(__x86_64) || defined(__x86_64__) || defined(__amd64) || defined(_M_X64)
#error cmake_arch x86_64
#endif
```
这种策略也是检测目标处理器体系结构的推荐策略,因为CMake似乎没有提供可移植的内在解决方案。另一种选择,将只使用CMake,完全不使用预处理器,代价是为每种情况设置不同的源文件,然后使用`target_source `命令将其设置为可执行目标`arch-dependent`依赖的源文件:
```cmake
add_executable(arch-dependent "")
if(CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "i386")
message(STATUS "i386 architecture detected")
target_sources(arch-dependent
PRIVATE
arch-dependent-i386.cpp
)
elseif(CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "i686")
message(STATUS "i686 architecture detected")
target_sources(arch-dependent
PRIVATE
arch-dependent-i686.cpp
)
elseif(CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "x86_64")
message(STATUS "x86_64 architecture detected")
target_sources(arch-dependent
PRIVATE
arch-dependent-x86_64.cpp
)
else()
message(STATUS "host processor architecture is unknown")
endif()
```
这种方法,显然需要对现有项目进行更多的工作,因为源文件需要分离。此外,不同源文件之间的代码复制肯定也会成为问题。
- Introduction
- 前言
- 第0章 配置环境
- 0.1 获取代码
- 0.2 Docker镜像
- 0.3 安装必要的软件
- 0.4 测试环境
- 0.5 上报问题并提出改进建议
- 第1章 从可执行文件到库
- 1.1 将单个源文件编译为可执行文件
- 1.2 切换生成器
- 1.3 构建和链接静态库和动态库
- 1.4 用条件句控制编译
- 1.5 向用户显示选项
- 1.6 指定编译器
- 1.7 切换构建类型
- 1.8 设置编译器选项
- 1.9 为语言设定标准
- 1.10 使用控制流
- 第2章 检测环境
- 2.1 检测操作系统
- 2.2 处理与平台相关的源代码
- 2.3 处理与编译器相关的源代码
- 2.4 检测处理器体系结构
- 2.5 检测处理器指令集
- 2.6 为Eigen库使能向量化
- 第3章 检测外部库和程序
- 3.1 检测Python解释器
- 3.2 检测Python库
- 3.3 检测Python模块和包
- 3.4 检测BLAS和LAPACK数学库
- 3.5 检测OpenMP的并行环境
- 3.6 检测MPI的并行环境
- 3.7 检测Eigen库
- 3.8 检测Boost库
- 3.9 检测外部库:Ⅰ. 使用pkg-config
- 3.10 检测外部库:Ⅱ. 自定义find模块
- 第4章 创建和运行测试
- 4.1 创建一个简单的单元测试
- 4.2 使用Catch2库进行单元测试
- 4.3 使用Google Test库进行单元测试
- 4.4 使用Boost Test进行单元测试
- 4.5 使用动态分析来检测内存缺陷
- 4.6 预期测试失败
- 4.7 使用超时测试运行时间过长的测试
- 4.8 并行测试
- 4.9 运行测试子集
- 4.10 使用测试固件
- 第5章 配置时和构建时的操作
- 5.1 使用平台无关的文件操作
- 5.2 配置时运行自定义命令
- 5.3 构建时运行自定义命令:Ⅰ. 使用add_custom_command
- 5.4 构建时运行自定义命令:Ⅱ. 使用add_custom_target
- 5.5 构建时为特定目标运行自定义命令
- 5.6 探究编译和链接命令
- 5.7 探究编译器标志命令
- 5.8 探究可执行命令
- 5.9 使用生成器表达式微调配置和编译
- 第6章 生成源码
- 6.1 配置时生成源码
- 6.2 使用Python在配置时生成源码
- 6.3 构建时使用Python生成源码
- 6.4 记录项目版本信息以便报告
- 6.5 从文件中记录项目版本
- 6.6 配置时记录Git Hash值
- 6.7 构建时记录Git Hash值
- 第7章 构建项目
- 7.1 使用函数和宏重用代码
- 7.2 将CMake源代码分成模块
- 7.3 编写函数来测试和设置编译器标志
- 7.4 用指定参数定义函数或宏
- 7.5 重新定义函数和宏
- 7.6 使用废弃函数、宏和变量
- 7.7 add_subdirectory的限定范围
- 7.8 使用target_sources避免全局变量
- 7.9 组织Fortran项目
- 第8章 超级构建模式
- 8.1 使用超级构建模式
- 8.2 使用超级构建管理依赖项:Ⅰ.Boost库
- 8.3 使用超级构建管理依赖项:Ⅱ.FFTW库
- 8.4 使用超级构建管理依赖项:Ⅲ.Google Test框架
- 8.5 使用超级构建支持项目
- 第9章 语言混合项目
- 9.1 使用C/C++库构建Fortran项目
- 9.2 使用Fortran库构建C/C++项目
- 9.3 使用Cython构建C++和Python项目
- 9.4 使用Boost.Python构建C++和Python项目
- 9.5 使用pybind11构建C++和Python项目
- 9.6 使用Python CFFI混合C,C++,Fortran和Python
- 第10章 编写安装程序
- 10.1 安装项目
- 10.2 生成输出头文件
- 10.3 输出目标
- 10.4 安装超级构建
- 第11章 打包项目
- 11.1 生成源代码和二进制包
- 11.2 通过PyPI发布使用CMake/pybind11构建的C++/Python项目
- 11.3 通过PyPI发布使用CMake/CFFI构建C/Fortran/Python项目
- 11.4 以Conda包的形式发布一个简单的项目
- 11.5 将Conda包作为依赖项发布给项目
- 第12章 构建文档
- 12.1 使用Doxygen构建文档
- 12.2 使用Sphinx构建文档
- 12.3 结合Doxygen和Sphinx
- 第13章 选择生成器和交叉编译
- 13.1 使用CMake构建Visual Studio 2017项目
- 13.2 交叉编译hello world示例
- 13.3 使用OpenMP并行化交叉编译Windows二进制文件
- 第14章 测试面板
- 14.1 将测试部署到CDash
- 14.2 CDash显示测试覆盖率
- 14.3 使用AddressSanifier向CDash报告内存缺陷
- 14.4 使用ThreadSaniiser向CDash报告数据争用
- 第15章 使用CMake构建已有项目
- 15.1 如何开始迁移项目
- 15.2 生成文件并编写平台检查
- 15.3 检测所需的链接和依赖关系
- 15.4 复制编译标志
- 15.5 移植测试
- 15.6 移植安装目标
- 15.7 进一步迁移的措施
- 15.8 项目转换为CMake的常见问题
- 第16章 可能感兴趣的书
- 16.1 留下评论——让其他读者知道你的想法