分治算法(Divide-and-Conquer Algorithm),就是分而治之,把一个复杂问题分成两个或更多个相同或相似的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
  分治算法比较适合用递归来实现,而每一层递归都会涉及三个操作:
  (1)分解:将原问题分解为若干个规模较小,相对独立,与原问题形式相同的子问题,缩小问题规模。
  (2)求解:若子问题规模较小且易于解决时(找出基线条件),则直接解。否则,递归地解决各子问题。其中基线条件(base case)通常是数组为空或只包含一个元素。
  (3)合并:将各子问题的解合并为原问题的解。
  分治算法是一种处理问题的思想和技巧,是很多高效算法的基础,例如排序算法(归并和快排)、最大公因数等。
  LeetCode的[169\. 多数元素](https://leetcode-cn.com/problems/majority-element/),可将数组一分为二,左边递归最大值(left),右边也一样(right),当两者相同,就是找到了;当不同时,比较谁的计数多。
  与动态规划不同,分治算法分解的子问题可以独立求解,并且它们之间没有相关性。
  在《剑指Offer》一书中曾提到,解决复杂问题的3种方法:
  (1)画图,涉及链表、二叉树等数据结构时,画几张草图,可将隐藏的规律变得直观。
  (2)举例,将抽象问题具体化,模拟运行过程,说不定能发现其中规律。
  (3)分解,如果问题很大,则尝试把大问题分解成小问题,然后递归解决,分治法、动态规划等方法都是分解复杂问题的思路。
## 一、归并排序
  利用递归与分治技术将数据序列划分成越来越小的半子表,再对半子表排序,最后用递归方法将排好序的半子表合并成为越来越大的有序序列,[如下所示](https://codepen.io/strick/pen/LYGoWmo),思路如图8所示。
~~~
function mergeSort(arr) {
let len = arr.length;
//基线条件
if (len < 2) {
return arr;
}
//分解
let middle = Math.floor(len / 2),
left = mergeSort(arr.slice(0, middle)),
right = mergeSort(arr.slice(middle));
//合并
return merge(left, right);
}
function merge(left, right) {
let result = [];
//求解
while (left.length && right.length) {
//小的在左,大的在右
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
}
while (left.length)
result.push(left.shift());
while (right.length)
result.push(right.shift());
return result;
}
~~~
:-: ![](https://img.kancloud.cn/ab/2b/ab2ba69d2b3cbb2643b307f8e8a1d853_406x559.png =300x)
图 8
  面试题51[数组中的逆序对](https://leetcode-cn.com/problems/shu-zu-zhong-de-ni-xu-dui-lcof/)。先统计子数组中的逆序对,然后统计两个相邻数组之间的逆序对,在统计的过程中还需要对数组进行归并排序。
## 二、快速排序
  采用“分而治之”的思想,把大的拆分为小的,小的再拆分为更小的。
  将原序列分为两部分,其中前一部分的所有记录均比后一部分的所有记录小,然后再依次对前后两部分的记录进行快速排序,递归该过程,直到序列中的所有记录均有序为止。
  代码实现[如下所示](https://codepen.io/strick/pen/GRoaWbN),思路如图9所示。
~~~
function quickSort(arr) {
var length = arr.length;
//基线条件
if (length <= 1) {
return arr;
}
var base = arr[0],
left = [], //保存小于基准元素的记录
right = []; //保存大于基准元素的记录
//求解
for (let i = 1; i < length; i++) {
if (base > arr[i]) { //放入左边数组
left.push(arr[i]);
} else { //放入右边数组
right.push(arr[i]);
}
}
//分解
left = quickSort(left);
right = quickSort(right);
//合并
return left.concat([base], right);
}
~~~
:-: ![](https://img.kancloud.cn/67/0c/670c5fdc164d714968f0e4573c0987ca_749x814.png =400x)
图 9
  面试题39[数组中出现次数超过一半的数字](https://leetcode-cn.com/problems/shu-zu-zhong-chu-xian-ci-shu-chao-guo-yi-ban-de-shu-zi-lcof/)。问题转换为查找中位数,受快速排序的启发,当基准值的下标刚好是n/2时,那么就是中位数,否则在另外两部分中查找。
  面试题40[最小的 k 个数](https://leetcode-cn.com/problems/zui-xiao-de-kge-shu-lcof/)。采用快速排序思想,基于数组第 k 个数字来调整,比 k 个数小的在左边,大的在右边。
*****
> 原文出处:
[博客园-数据结构和算法躬行记](https://www.cnblogs.com/strick/category/1809992.html)
已建立一个微信前端交流群,如要进群,请先加微信号freedom20180706或扫描下面的二维码,请求中需注明“看云加群”,在通过请求后就会把你拉进来。还搜集整理了一套[面试资料](https://github.com/pwstrick/daily),欢迎阅读。
![](https://box.kancloud.cn/2e1f8ecf9512ecdd2fcaae8250e7d48a_430x430.jpg =200x200)
推荐一款前端监控脚本:[shin-monitor](https://github.com/pwstrick/shin-monitor),不仅能监控前端的错误、通信、打印等行为,还能计算各类性能参数,包括 FMP、LCP、FP 等。
- ES6
- 1、let和const
- 2、扩展运算符和剩余参数
- 3、解构
- 4、模板字面量
- 5、对象字面量的扩展
- 6、Symbol
- 7、代码模块化
- 8、数字
- 9、字符串
- 10、正则表达式
- 11、对象
- 12、数组
- 13、类型化数组
- 14、函数
- 15、箭头函数和尾调用优化
- 16、Set
- 17、Map
- 18、迭代器
- 19、生成器
- 20、类
- 21、类的继承
- 22、Promise
- 23、Promise的静态方法和应用
- 24、代理和反射
- HTML
- 1、SVG
- 2、WebRTC基础实践
- 3、WebRTC视频通话
- 4、Web音视频基础
- CSS进阶
- 1、CSS基础拾遗
- 2、伪类和伪元素
- 3、CSS属性拾遗
- 4、浮动形状
- 5、渐变
- 6、滤镜
- 7、合成
- 8、裁剪和遮罩
- 9、网格布局
- 10、CSS方法论
- 11、管理后台响应式改造
- React
- 1、函数式编程
- 2、JSX
- 3、组件
- 4、生命周期
- 5、React和DOM
- 6、事件
- 7、表单
- 8、样式
- 9、组件通信
- 10、高阶组件
- 11、Redux基础
- 12、Redux中间件
- 13、React Router
- 14、测试框架
- 15、React Hooks
- 16、React源码分析
- 利器
- 1、npm
- 2、Babel
- 3、webpack基础
- 4、webpack进阶
- 5、Git
- 6、Fiddler
- 7、自制脚手架
- 8、VSCode插件研发
- 9、WebView中的页面调试方法
- Vue.js
- 1、数据绑定
- 2、指令
- 3、样式和表单
- 4、组件
- 5、组件通信
- 6、内容分发
- 7、渲染函数和JSX
- 8、Vue Router
- 9、Vuex
- TypeScript
- 1、数据类型
- 2、接口
- 3、类
- 4、泛型
- 5、类型兼容性
- 6、高级类型
- 7、命名空间
- 8、装饰器
- Node.js
- 1、Buffer、流和EventEmitter
- 2、文件系统和网络
- 3、命令行工具
- 4、自建前端监控系统
- 5、定时任务的调试
- 6、自制短链系统
- 7、定时任务的进化史
- 8、通用接口
- 9、微前端实践
- 10、接口日志查询
- 11、E2E测试
- 12、BFF
- 13、MySQL归档
- 14、压力测试
- 15、活动规则引擎
- 16、活动配置化
- 17、UmiJS版本升级
- 18、半吊子的可视化搭建系统
- 19、KOA源码分析(上)
- 20、KOA源码分析(下)
- 21、花10分钟入门Node.js
- 22、Node环境升级日志
- 23、Worker threads
- 24、低代码
- 25、Web自动化测试
- 26、接口拦截和页面回放实验
- 27、接口管理
- 28、Cypress自动化测试实践
- 29、基于Electron的开播助手
- Node.js精进
- 1、模块化
- 2、异步编程
- 3、流
- 4、事件触发器
- 5、HTTP
- 6、文件
- 7、日志
- 8、错误处理
- 9、性能监控(上)
- 10、性能监控(下)
- 11、Socket.IO
- 12、ElasticSearch
- 监控系统
- 1、SDK
- 2、存储和分析
- 3、性能监控
- 4、内存泄漏
- 5、小程序
- 6、较长的白屏时间
- 7、页面奔溃
- 8、shin-monitor源码分析
- 前端性能精进
- 1、优化方法论之测量
- 2、优化方法论之分析
- 3、浏览器之图像
- 4、浏览器之呈现
- 5、浏览器之JavaScript
- 6、网络
- 7、构建
- 前端体验优化
- 1、概述
- 2、基建
- 3、后端
- 4、数据
- 5、后台
- Web优化
- 1、CSS优化
- 2、JavaScript优化
- 3、图像和网络
- 4、用户体验和工具
- 5、网站优化
- 6、优化闭环实践
- 数据结构与算法
- 1、链表
- 2、栈、队列、散列表和位运算
- 3、二叉树
- 4、二分查找
- 5、回溯算法
- 6、贪心算法
- 7、分治算法
- 8、动态规划
- 程序员之路
- 大学
- 2011年
- 2012年
- 2013年
- 2014年
- 项目反思
- 前端基础学习分享
- 2015年
- 再一次项目反思
- 然并卵
- PC网站CSS分享
- 2016年
- 制造自己的榫卯
- PrimusUI
- 2017年
- 工匠精神
- 2018年
- 2019年
- 前端学习之路分享
- 2020年
- 2021年
- 2022年
- 2023年
- 日志
- 2020