多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
# 合并重叠间隔 > 原文: [https://www.geeksforgeeks.org/merging-intervals/](https://www.geeksforgeeks.org/merging-intervals/) 给定一组任意时间间隔的时间,将所有重叠的时间间隔合并为一个,并输出仅具有互斥时间间隔的结果。 为了简单起见,将间隔表示为整数对。 例如,让给定的间隔集为{{1,3},{2,4},{5,7},{6,8}}。 间隔{1,3}和{2,4}彼此重叠,因此应将它们合并并成为{1,4}。 同样,{5,7}和{6,8}应该合并并成为{5,8} 编写一个函数,该函数为给定间隔集生成合并间隔集。 **简单方法**是从第一个间隔开始并将其与所有其他间隔进行比较以进行重叠,如果它与任何其他间隔重叠,则从列表中删除另一个间隔并将另一个合并到第一个间隔中。 首先,对剩余间隔重复相同的步骤。 这种方法无法在比 O(n ^ 2)更好的时间内实现。 **有效方法**是首先根据开始时间对时间间隔进行排序。 获得排序间隔后,就可以将所有间隔进行线性遍历。 这个想法是,在间隔的排序数组中,如果 interval [i]不与 interval [i-1]重叠,则 interval [i + 1]就不能与 interval [i-1]重叠,因为 interval [i]的开始时间 +1]必须大于或等于 interval [i]。 以下是详细的逐步算法。 ``` 1. Sort the intervals based on increasing order of starting time. 2\. Push the first interval on to a stack. 3\. For each interval do the following a. If the current interval does not overlap with the stack top, push it. b. If the current interval overlaps with stack top and ending time of current interval is more than that of stack top, update stack top with the ending time of current interval. 4. At the end stack contains the merged intervals. ``` 以下是上述方法的实现。 ## C++ ```cpp // A C++ program for merging overlapping intervals #include<bits/stdc++.h> using namespace std; // An interval has start time and end time struct Interval {     int start, end; }; // Compares two intervals according to their staring time. // This is needed for sorting the intervals using library // function std::sort(). See http://goo.gl/iGspV bool compareInterval(Interval i1, Interval i2) {     return (i1.start < i2.start); } // The main function that takes a set of intervals, merges // overlapping intervals and prints the result void mergeIntervals(Interval arr[], int n) {     // Test if the given set has at least one interval     if (n <= 0)         return;     // Create an empty stack of intervals     stack<Interval> s;     // sort the intervals in increasing order of start time     sort(arr, arr+n, compareInterval);     // push the first interval to stack     s.push(arr[0]);     // Start from the next interval and merge if necessary     for (int i = 1 ; i < n; i++)     {         // get interval from stack top         Interval top = s.top();         // if current interval is not overlapping with stack top,         // push it to the stack         if (top.end < arr[i].start)             s.push(arr[i]);         // Otherwise update the ending time of top if ending of current         // interval is more         else if (top.end < arr[i].end)         {             top.end = arr[i].end;             s.pop();             s.push(top);         }     }     // Print contents of stack     cout << "\n The Merged Intervals are: ";     while (!s.empty())     {         Interval t = s.top();         cout << "[" << t.start << "," << t.end << "] ";         s.pop();     }     return; } // Driver program int main() {     Interval arr[] =  { {6,8}, {1,9}, {2,4}, {4,7} };     int n = sizeof(arr)/sizeof(arr[0]);     mergeIntervals(arr, n);     return 0; } ``` ## Java ```java // A Java program for merging overlapping intervals import java.util.Arrays; import java.util.Comparator; import java.util.Stack; public class MergeOverlappingIntervals {     // The main function that takes a set of intervals, merges      // overlapping intervals and prints the result      public static void mergeIntervals(Interval arr[])      {          // Test if the given set has at least one interval          if (arr.length <= 0)              return;          // Create an empty stack of intervals          Stack<Interval> stack=new Stack<>();         // sort the intervals in increasing order of start time          Arrays.sort(arr,new Comparator<Interval>(){             public int compare(Interval i1,Interval i2)             {                 return i1.start-i2.start;             }         });         // push the first interval to stack          stack.push(arr[0]);          // Start from the next interval and merge if necessary          for (int i = 1 ; i < arr.length; i++)          {              // get interval from stack top              Interval top = stack.peek();              // if current interval is not overlapping with stack top,              // push it to the stack              if (top.end < arr[i].start)                  stack.push(arr[i]);              // Otherwise update the ending time of top if ending of current              // interval is more              else if (top.end < arr[i].end)              {                  top.end = arr[i].end;                  stack.pop();                  stack.push(top);              }          }          // Print contents of stack          System.out.print("The Merged Intervals are: ");         while (!stack.isEmpty())          {              Interval t = stack.pop();              System.out.print("["+t.start+","+t.end+"] ");         }       }       public static void main(String args[]) {         Interval arr[]=new Interval[4];         arr[0]=new Interval(6,8);         arr[1]=new Interval(1,9);         arr[2]=new Interval(2,4);         arr[3]=new Interval(4,7);         mergeIntervals(arr);     } } class Interval {     int start,end;     Interval(int start, int end)     {         this.start=start;         this.end=end;     } } // This code is contributed by Gaurav Tiwari  ``` Output: ``` The Merged Intervals are: [1,9] ``` 该方法的时间复杂度是 O(nLogn),用于排序。 对间隔数组进行排序后,合并将花费线性时间。 **`O(N log N)`和`O(1)`额外空间解决方案** 上述解决方案需要`O(n)`额外的堆栈空间。 通过就地进行合并操作,我们可以避免使用额外的空间。 以下是详细步骤。 ``` 1) Sort all intervals in decreasing order of start time. 2) Traverse sorted intervals starting from first interval, do following for every interval. a) If current interval is not first interval and it overlaps with previous interval, then merge it with previous interval. Keep doing it while the interval overlaps with the previous one. b) Else add current interval to output list of intervals. ``` 请注意,如果按开始时间的降序对时间间隔进行排序,则可以通过比较前一个时间间隔的开始时间与当前时间间隔的结束时间来快速检查时间间隔是否重叠。 下面是上述算法的实现。 ## C++ ``` // C++ program to merge overlapping Intervals in  // O(n Log n) time and O(1) extra space.  #include<bits/stdc++.h>  using namespace std;  // An Interval  struct Interval  {      int s, e;  };  // Function used in sort  bool mycomp(Interval a, Interval b)  { return a.s < b.s; }  void mergeIntervals(Interval arr[], int n)  {      // Sort Intervals in increasing order of     // start time     sort(arr, arr+n, mycomp);      int index = 0; // Stores index of last element      // in output array (modified arr[])      // Traverse all input Intervals      for (int i=1; i<n; i++)      {          // If this is not first Interval and overlaps          // with the previous one          if (arr[index].e >=  arr[i].s)          {                 // Merge previous and current Intervals              arr[index].e = max(arr[index].e, arr[i].e);              arr[index].s = min(arr[index].s, arr[i].s);          }          else {             arr[index] = arr[i];              index++;         }         }      // Now arr[0..index-1] stores the merged Intervals      cout << "\n The Merged Intervals are: ";      for (int i = 0; i <= index; i++)          cout << "[" << arr[i].s << ", " << arr[i].e << "] ";  }  // Driver program  int main()  {      Interval arr[] = { {6,8}, {1,9}, {2,4}, {4,7} };      int n = sizeof(arr)/sizeof(arr[0]);      mergeIntervals(arr, n);      return 0;  }  ```