# 计算数组中的反转 系列 1(使用合并排序)
> 原文: [https://www.geeksforgeeks.org/counting-inversions/](https://www.geeksforgeeks.org/counting-inversions/)
*数组的反转计数*指示–数组要排序的距离(或距离)。 如果数组已经排序,则反转计数为 0。如果数组以相反顺序排序,则反转计数为最大。
形式上讲,如果 a [i] > a [j]和 i < j,则两个元素 a [i]和 a [j]形成一个倒置
**示例**:
```
Input: arr[] = {8, 4, 2, 1}
Output: 6
Explanation: Given array has six inversions:
(8,4), (4,2),(8,2), (8,1), (4,1), (2,1).
Input: arr[] = {3, 1, 2}
Output: 2
Explanation: Given array has two inversions:
(3, 1), (3, 2)
```
**方法 1(简单)**
* **方法**:遍历数组,并为每个索引找到数组右侧的较小元素的数量。 这可以使用嵌套循环来完成。 对数组中所有索引的计数求和,然后打印总和。
* **算法**:
1. 从头到尾遍历数组
2. 对于每个元素,使用另一个循环找到小于当前数量的元素数,直到该索引为止。
3. 总结每个索引的反转计数。
4. 打印反转计数。
* **实现**:
## C++
```
// C++ program to Count Inversions
// in an array
#include <bits/stdc++.h>
using namespace std;
int getInvCount(int arr[], int n)
{
int inv_count = 0;
for (int i = 0; i < n - 1; i++)
for (int j = i + 1; j < n; j++)
if (arr[i] > arr[j])
inv_count++;
return inv_count;
}
// Driver Code
int main()
{
int arr[] = { 1, 20, 6, 4, 5 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << " Number of inversions are "
<< getInvCount(arr, n);
return 0;
}
// This code is contributed
// by Akanksha Rai
```
## C
```
// C program to Count
// Inversions in an array
#include <stdio.h>
int getInvCount(int arr[], int n)
{
int inv_count = 0;
for (int i = 0; i < n - 1; i++)
for (int j = i + 1; j < n; j++)
if (arr[i] > arr[j])
inv_count++;
return inv_count;
}
/* Driver program to test above functions */
int main()
{
int arr[] = { 1, 20, 6, 4, 5 };
int n = sizeof(arr) / sizeof(arr[0]);
printf(" Number of inversions are %d \n", getInvCount(arr, n));
return 0;
}
```
## Java
```
// Java program to count
// inversions in an array
class Test {
static int arr[] = new int[] { 1, 20, 6, 4, 5 };
static int getInvCount(int n)
{
int inv_count = 0;
for (int i = 0; i < n - 1; i++)
for (int j = i + 1; j < n; j++)
if (arr[i] > arr[j])
inv_count++;
return inv_count;
}
// Driver method to test the above function
public static void main(String[] args)
{
System.out.println("Number of inversions are "
+ getInvCount(arr.length));
}
}
```
## Python3
```
# Python3 program to count
# inversions in an array
def getInvCount(arr, n):
inv_count = 0
for i in range(n):
for j in range(i + 1, n):
if (arr[i] > arr[j]):
inv_count += 1
return inv_count
# Driver Code
arr = [1, 20, 6, 4, 5]
n = len(arr)
print("Number of inversions are",
getInvCount(arr, n))
# This code is contributed by Smitha Dinesh Semwal
```
## C#
```
// C# program to count inversions
// in an array
using System;
using System.Collections.Generic;
class GFG {
static int[] arr = new int[] { 1, 20, 6, 4, 5 };
static int getInvCount(int n)
{
int inv_count = 0;
for (int i = 0; i < n - 1; i++)
for (int j = i + 1; j < n; j++)
if (arr[i] > arr[j])
inv_count++;
return inv_count;
}
// Driver code
public static void Main()
{
Console.WriteLine("Number of "
+ "inversions are "
+ getInvCount(arr.Length));
}
}
// This code is contributed by Sam007
```
## PHP
```
<?php
// PHP program to Count Inversions
// in an array
function getInvCount(&$arr, $n)
{
$inv_count = 0;
for ($i = 0; $i < $n - 1; $i++)
for ($j = $i + 1; $j < $n; $j++)
if ($arr[$i] > $arr[$j])
$inv_count++;
return $inv_count;
}
// Driver Code
$arr = array(1, 20, 6, 4, 5 );
$n = sizeof($arr);
echo "Number of inversions are ",
getInvCount($arr, $n);
// This code is contributed by ita_c
?>
```
**输出**:
```
Number of inversions are 5
```
* **复杂度分析**:
* **时间复杂度**: O(n ^ 2),需要两个嵌套循环才能从头到尾遍历数组,因此时间复杂度为 O(n ^ 2)
* **空间复杂度**:`O(1)`,不需要额外的空间。
**方法 2(增强合并排序)**
* **Approach:**
Suppose the number of inversions in the left half and right half of the array (let be inv1 and inv2), what kinds of inversions are not accounted for in Inv1 + Inv2? The answer is – the inversions that need to be counted during the merge step. Therefore, to get a number of inversions, that needs to be added a number of inversions in the left subarray, right subarray and merge().
![inv_count1](https://img.kancloud.cn/bd/2f/bd2fd63c3c1a3a09a6941a15a65a2cc0_559x242.png "inv_count1")
**如何获取 merge()中的反转数?**
在合并过程中,让我用于索引左子数组,让 j 用于右子数组。 在 merge()的任何步骤中,如果 a [i]大于 a [j],则存在(mid – i)个反转。 因为左子数组和右子数组已排序,所以左子数组中的所有其余元素(a [i + 1],a [i + 2]…a [mid])将大于 a [j]
![inv_count2](https://img.kancloud.cn/09/00/09005a3092fdf209f5e1c824a94c3e9e_857x413.png "inv_count2")
**完整图片**:
![inv_count3](https://img.kancloud.cn/67/f8/67f89f6d9bfc3ae91661bfc205d76214_502x472.png "inv_count3")
* **算法**:
1. 这个想法类似于合并排序,将数组分成两个相等或几乎相等的两半,直到达到基本情况为止。
2. 创建一个函数合并,计算合并数组的两半时的反转次数,创建两个索引 i 和 j,i 是上半部分的索引,j 是下半部分的索引。 如果 a [i]大于 a [j],则存在(mid – i)个反演。 因为左子数组和右子数组已排序,所以左子数组中的所有其余元素(a [i + 1],a [i + 2]…a [mid])将大于 a [j]。
3. 创建一个递归函数,将数组分成两半,然后求和前一半的求反数,再求后一半的求反数,然后将两者合并,求反。
4. 递归的基本情况是在给定的一半中只有一个元素。
5. 打印答案
* **实现**:
## C++
```
// C++ program to Count
// Inversions in an array
// using Merge Sort
#include <bits/stdc++.h>
using namespace std;
int _mergeSort(int arr[], int temp[], int left, int right);
int merge(int arr[], int temp[], int left, int mid, int right);
/* This function sorts the input array and returns the
number of inversions in the array */
int mergeSort(int arr[], int array_size)
{
int temp[array_size];
return _mergeSort(arr, temp, 0, array_size - 1);
}
/* An auxiliary recursive function that sorts the input array and
returns the number of inversions in the array. */
int _mergeSort(int arr[], int temp[], int left, int right)
{
int mid, inv_count = 0;
if (right > left) {
/* Divide the array into two parts and
call _mergeSortAndCountInv()
for each of the parts */
mid = (right + left) / 2;
/* Inversion count will be sum of
inversions in left-part, right-part
and number of inversions in merging */
inv_count += _mergeSort(arr, temp, left, mid);
inv_count += _mergeSort(arr, temp, mid + 1, right);
/*Merge the two parts*/
inv_count += merge(arr, temp, left, mid + 1, right);
}
return inv_count;
}
/* This funt merges two sorted arrays
and returns inversion count in the arrays.*/
int merge(int arr[], int temp[], int left,
int mid, int right)
{
int i, j, k;
int inv_count = 0;
i = left; /* i is index for left subarray*/
j = mid; /* j is index for right subarray*/
k = left; /* k is index for resultant merged subarray*/
while ((i <= mid - 1) && (j <= right)) {
if (arr[i] <= arr[j]) {
temp[k++] = arr[i++];
}
else {
temp[k++] = arr[j++];
/* this is tricky -- see above
explanation/diagram for merge()*/
inv_count = inv_count + (mid - i);
}
}
/* Copy the remaining elements of left subarray
(if there are any) to temp*/
while (i <= mid - 1)
temp[k++] = arr[i++];
/* Copy the remaining elements of right subarray
(if there are any) to temp*/
while (j <= right)
temp[k++] = arr[j++];
/*Copy back the merged elements to original array*/
for (i = left; i <= right; i++)
arr[i] = temp[i];
return inv_count;
}
// Driver code
int main()
{
int arr[] = { 1, 20, 6, 4, 5 };
int n = sizeof(arr) / sizeof(arr[0]);
int ans = mergeSort(arr, n);
cout << " Number of inversions are " << ans;
return 0;
}
// This is code is contributed by rathbhupendra
```
## C
```
// C program to Count
// Inversions in an array
// using Merge Sort
#include <stdio.h>
int _mergeSort(int arr[], int temp[], int left, int right);
int merge(int arr[], int temp[], int left, int mid, int right);
/* This function sorts the input array and returns the
number of inversions in the array */
int mergeSort(int arr[], int array_size)
{
int* temp = (int*)malloc(sizeof(int) * array_size);
return _mergeSort(arr, temp, 0, array_size - 1);
}
/* An auxiliary recursive function that sorts the input array and
returns the number of inversions in the array. */
int _mergeSort(int arr[], int temp[], int left, int right)
{
int mid, inv_count = 0;
if (right > left) {
/* Divide the array into two parts and call _mergeSortAndCountInv()
for each of the parts */
mid = (right + left) / 2;
/* Inversion count will be the sum of inversions in left-part, right-part
and number of inversions in merging */
inv_count += _mergeSort(arr, temp, left, mid);
inv_count += _mergeSort(arr, temp, mid + 1, right);
/*Merge the two parts*/
inv_count += merge(arr, temp, left, mid + 1, right);
}
return inv_count;
}
/* This funt merges two sorted arrays and returns inversion count in
the arrays.*/
int merge(int arr[], int temp[], int left, int mid, int right)
{
int i, j, k;
int inv_count = 0;
i = left; /* i is index for left subarray*/
j = mid; /* j is index for right subarray*/
k = left; /* k is index for resultant merged subarray*/
while ((i <= mid - 1) && (j <= right)) {
if (arr[i] <= arr[j]) {
temp[k++] = arr[i++];
}
else {
temp[k++] = arr[j++];
/*this is tricky -- see above explanation/diagram for merge()*/
inv_count = inv_count + (mid - i);
}
}
/* Copy the remaining elements of left subarray
(if there are any) to temp*/
while (i <= mid - 1)
temp[k++] = arr[i++];
/* Copy the remaining elements of right subarray
(if there are any) to temp*/
while (j <= right)
temp[k++] = arr[j++];
/*Copy back the merged elements to original array*/
for (i = left; i <= right; i++)
arr[i] = temp[i];
return inv_count;
}
/* Driver program to test above functions */
int main(int argv, char** args)
{
int arr[] = { 1, 20, 6, 4, 5 };
printf(" Number of inversions are %d \n", mergeSort(arr, 5));
getchar();
return 0;
}
```
## Java
```
// Java implementation of the approach
import java.util.Arrays;
public class GFG {
// Function to count the number of inversions
// during the merge process
private static int mergeAndCount(int[] arr, int l, int m, int r)
{
// Left subarray
int[] left = Arrays.copyOfRange(arr, l, m + 1);
// Right subarray
int[] right = Arrays.copyOfRange(arr, m + 1, r + 1);
int i = 0, j = 0, k = l, swaps = 0;
while (i < left.length && j < right.length) {
if (left[i] <= right[j])
arr[k++] = left[i++];
else {
arr[k++] = right[j++];
swaps += (m + 1) - (l + i);
}
}
// Fill from the rest of the left subarray
while (i < left.length)
arr[k++] = left[i++];
// Fill from the rest of the right subarray
while (j < right.length)
arr[k++] = right[j++];
return swaps;
}
// Merge sort function
private static int mergeSortAndCount(int[] arr, int l, int r)
{
// Keeps track of the inversion count at a
// particular node of the recursion tree
int count = 0;
if (l < r) {
int m = (l + r) / 2;
// Total inversion count = left subarray count
// + right subarray count + merge count
// Left subarray count
count += mergeSortAndCount(arr, l, m);
// Right subarray count
count += mergeSortAndCount(arr, m + 1, r);
// Merge count
count += mergeAndCount(arr, l, m, r);
}
return count;
}
// Driver code
public static void main(String[] args)
{
int[] arr = { 1, 20, 6, 4, 5 };
System.out.println(mergeSortAndCount(arr, 0, arr.length - 1));
}
}
// This code is contributed by Pradip Basak
```
## Python3
```
# Python 3 program to count inversions in an array
# Function to Use Inversion Count
def mergeSort(arr, n):
# A temp_arr is created to store
# sorted array in merge function
temp_arr = [0]*n
return _mergeSort(arr, temp_arr, 0, n-1)
# This Function will use MergeSort to count inversions
def _mergeSort(arr, temp_arr, left, right):
# A variable inv_count is used to store
# inversion counts in each recursive call
inv_count = 0
# We will make a recursive call if and only if
# we have more than one elements
if left < right:
# mid is calculated to divide the array into two subarrays
# Floor division is must in case of python
mid = (left + right)//2
# It will calculate inversion counts in the left subarray
inv_count += _mergeSort(arr, temp_arr, left, mid)
# It will calculate inversion counts in right subarray
inv_count += _mergeSort(arr, temp_arr, mid + 1, right)
# It will merge two subarrays in a sorted subarray
inv_count += merge(arr, temp_arr, left, mid, right)
return inv_count
# This function will merge two subarrays in a single sorted subarray
def merge(arr, temp_arr, left, mid, right):
i = left # Starting index of left subarray
j = mid + 1 # Starting index of right subarray
k = left # Starting index of to be sorted subarray
inv_count = 0
# Conditions are checked to make sure that i and j don't exceed their
# subarray limits.
while i <= mid and j <= right:
# There will be no inversion if arr[i] <= arr[j]
if arr[i] <= arr[j]:
temp_arr[k] = arr[i]
k += 1
i += 1
else:
# Inversion will occur.
temp_arr[k] = arr[j]
inv_count += (mid-i + 1)
k += 1
j += 1
# Copy the remaining elements of left subarray into temporary array
while i <= mid:
temp_arr[k] = arr[i]
k += 1
i += 1
# Copy the remaining elements of right subarray into temporary array
while j <= right:
temp_arr[k] = arr[j]
k += 1
j += 1
# Copy the sorted subarray into Original array
for loop_var in range(left, right + 1):
arr[loop_var] = temp_arr[loop_var]
return inv_count
# Driver Code
# Given array is
arr = [1, 20, 6, 4, 5]
n = len(arr)
result = mergeSort(arr, n)
print("Number of inversions are", result)
# This code is contributed by ankush_953
```
## C#
```
// C# implementation of counting the
// inversion using merge sort
using System;
public class Test {
/* This method sorts the input array and returns the
number of inversions in the array */
static int mergeSort(int[] arr, int array_size)
{
int[] temp = new int[array_size];
return _mergeSort(arr, temp, 0, array_size - 1);
}
/* An auxiliary recursive method that sorts the input array and
returns the number of inversions in the array. */
static int _mergeSort(int[] arr, int[] temp, int left, int right)
{
int mid, inv_count = 0;
if (right > left) {
/* Divide the array into two parts and call _mergeSortAndCountInv()
for each of the parts */
mid = (right + left) / 2;
/* Inversion count will be the sum of inversions in left-part, right-part
and number of inversions in merging */
inv_count += _mergeSort(arr, temp, left, mid);
inv_count += _mergeSort(arr, temp, mid + 1, right);
/*Merge the two parts*/
inv_count += merge(arr, temp, left, mid + 1, right);
}
return inv_count;
}
/* This method merges two sorted arrays and returns inversion count in
the arrays.*/
static int merge(int[] arr, int[] temp, int left, int mid, int right)
{
int i, j, k;
int inv_count = 0;
i = left; /* i is index for left subarray*/
j = mid; /* j is index for right subarray*/
k = left; /* k is index for resultant merged subarray*/
while ((i <= mid - 1) && (j <= right)) {
if (arr[i] <= arr[j]) {
temp[k++] = arr[i++];
}
else {
temp[k++] = arr[j++];
/*this is tricky -- see above explanation/diagram for merge()*/
inv_count = inv_count + (mid - i);
}
}
/* Copy the remaining elements of left subarray
(if there are any) to temp*/
while (i <= mid - 1)
temp[k++] = arr[i++];
/* Copy the remaining elements of right subarray
(if there are any) to temp*/
while (j <= right)
temp[k++] = arr[j++];
/*Copy back the merged elements to original array*/
for (i = left; i <= right; i++)
arr[i] = temp[i];
return inv_count;
}
// Driver method to test the above function
public static void Main()
{
int[] arr = new int[] { 1, 20, 6, 4, 5 };
Console.Write("Number of inversions are " + mergeSort(arr, 5));
}
}
// This code is contributed by Rajput-Ji
```
**输出**:
```
Number of inversions are 5
```
* **复杂度分析**:
* **时间复杂度**:`O(N log N)`,使用的算法是分治法,因此在每个级别中需要一个完整的数组遍历,并且存在 log n 个级别,因此时间复杂度为`O(N log N)`)。
* **空间复杂度**:`O(n)`,临时数组。
注意上面的代码修改(或排序)输入数组。 如果我们只想计算倒数,那么我们需要创建一个原始数组的副本,并在副本上调用 mergeSort()。
您可能想看看。
[计数数组中的求反| 集合 2(使用自平衡 BST)](https://www.geeksforgeeks.org/count-inversions-in-an-array-set-2-using-self-balancing-bst/)
[使用 C++ STL 中的 Set 计数反转](http://quiz.geeksforgeeks.org/counting-inversions-using-set-in-c-stl/)
[计数数组中的反转| 第 3 组(使用 BIT)](https://www.geeksforgeeks.org/count-inversions-array-set-3-using-bit/)
**参考**:
[http://www.cs.umd.edu/class/fall2009/cmsc451/lectures/Lec08-inversions.pdf](http://www.cs.umd.edu/class/fall2009/cmsc451/lectures/Lec08-inversions.pdf)
[http://www.cp.eng.chula.ac.th/~piak/teaching/algo/algo2008/count-inv.htm](http://www.cp.eng.chula.ac.th/~piak/teaching/algo/algo2008/count-inv.htm)
如果您在上述程序/算法或其他解决相同问题的方法中发现任何错误,请发表评论。
- GeeksForGeeks 数组教程
- 介绍
- 数组介绍
- C/C++ 中的数组
- Java 中的数组
- Python 中的数组| 系列 1(简介和功能)
- C# | 数组
- 回转
- 数组旋转程序
- 数组旋转的逆向算法
- 数组旋转的块交换算法
- 程序循环旋转一个数组
- 在经过排序和旋转的数组中搜索元素
- 给定一个经过排序和旋转的数组,查找是否存在一对具有给定总和的数组
- 在只允许旋转给定数组的情况下找到Sum(i * arr[i])的最大值
- 给定数组所有旋转中i * arr [i]的最大和
- 在旋转排序数组中找到旋转计数
- 快速找到数组的多个左旋转| 系列 1
- 在经过排序和旋转的数组中找到最小元素
- 数组右旋转的逆向算法
- 查找具有最大汉明距离的旋转
- 数组左右循环查询
- 在O(n)时间和O(1)空间中打印数组的左旋转
- 旋转几次后,在给定索引处查找元素
- 拆分数组并将第一部分添加到末尾
- 重排
- 重新排列数组,使arr[i] = i
- 编写程序以反转数组或字符串
- 重新排列数组,如果i为偶数则arr[i] >= arr[j],如果i为奇数且j < i则 arr[i] <= arr[j]
- 在O(n)时间和O(1)额外空间中重新排列正数和负数
- 重新排列数组,交替出现&个正数的负数项,多余的空间为O(1) | 系列 1
- 将所有零移动到数组末尾
- 将所有零移动到数组的末尾| 系列 2(使用单遍历)
- 将所有小于或等于 k 的元素组合在一起所需的最小交换
- 使用内置排序功能重新排列正数和负数
- 重新排列数组,使偶数位置大于奇数
- 按顺序重新排列数组-最小,最大,第二个最小,第二个最大..
- 将第一个元素加倍,然后将零移动到结尾
- 根据给定的索引对数组重新排序
- 用恒定的额外空间重新排列正数和负数
- 排列给定数字以形成最大数| 系列 1
- 重新排列数组,如果arr[i]为j,则arr[j]变为i | 系列 1
- 以最大最小形式重新排列数组| 系列 1
- 以最大最小形式重新排列数组| 系列 2(O(1)额外空间)
- 将所有负元素移动到最后,并留出足够的空间
- 重新排列数组,使偶数索引元素较小而奇数索引元素较大
- 正数元素位于偶数位置,负数元素位于奇数位置(不保持相对顺序)
- 用上一个和下一个的乘法替换每个数组元素
- 使用 Fisher-Yates 随机播放算法随机播放给定数组
- 分离偶数和奇数| 系列 3
- 将数组中的 0 和 1 分开
- 最长的双子序列| DP-15
- 在线性时间内找到大小为 3 的排序子序列
- 最大数目等于 0 和 1 的子数组
- 最大产品子数组
- 用右侧的最大元素替换每个元素
- 最大循环子数组总和
- 最长递增子序列的构造(N log N)
- 按频率对元素排序| 系列 2
- 最大化圆形数组中的连续差之和
- 根据另一个数组定义的顺序对数组进行排序
- 查找索引 0 替换为 1,以获得二进制数组中最长的连续序列 1s
- 在给定范围内对数组进行三向分区
- 从两个给定排序数组的备用元素生成所有可能的排序数组
- 安排彼此相邻的线对所需的最小交换次数
- 将数组转换为 Zig-Zag 风格
- 从给定序列中形成最小数
- 将两个连续的相等值替换为一个更大的值
- 重新排列二进制字符串作为 x 和 y 的交替出现
- 数组中不同的相邻元素
- 不使用多余空间将 2n 个整数随机排列为 a1-b1-a2-b2-a3-b3-.bn
- 合并 k 个排序的数组| 系列 1
- 订单统计
- 未排序数组中第 K 个最小/最大元素| 系列 1
- 未排序数组中第 K 个最小/最大元素| 系列 2(预期线性时间)
- 未排序数组中第 K 个最小/最大元素| 组合 3(最坏情况的线性时间)
- 使用 STL 的第 K 个最小/最大元素
- 数组中的 k 个最大(或最小)元素| 添加了最小堆方法
- 按行和按列排序的 2D 数组中的 Kth 个最小元素| 系列 1
- 程序以查找数组中的最大元素
- 查找数组中最大的三个元素
- 查找数组中至少有两个大元素的所有元素
- 未排序数组的均值和中位数的程序
- 使用 STL 的运行整数流的中位数
- 正整数数组中 k 个整数的最小积
- 第 K 个最大和的连续子数组
- 来自两个数组的 K 个最大和组合
- 重叠的连续子数组的 K 个最大和
- 非重叠的连续子数组的 K 个最大和
- 使用O(1)额外空间按相同顺序排列 k 个最小元素
- 在两个数组中找到具有最小和的 k 对
- 数组中两个元素的第 k 个最小绝对差
- 在数组中查找第二大元素
- 查找给定数组中出现次数最多的 k 个数字
- 查找数组中的最小和第二个最小元素
- 寻找最小的遗失号码
- 使得两个元素都不相邻的最大和
- 使用最少数量的比较的数组的最大值和最小值
- 两个元素之间的最大差异,使得较大的元素出现在较小的数字之后
- 给定数组 arr [],找到最大 j – i,使得 arr [j] > arr [i]
- 最大滑动窗口(大小为 k 的所有子数组的最大值)
- 找到两个数字之间的最小距离
- 在先增加然后减少的数组中找到最大元素
- 计算右侧较小的元素
- 最长递增子序列大小(N log N)
- 查找未排序数组中缺失的最小正数| 系列 1
- 在O(n)时间和O(1)多余空间中找到最大重复数
- 给定大小为 n 且数字为 k 的数组,找到出现次数超过 n / k 次的所有元素
- 找出长度为 3 且具有最大乘积的递增子序列
- 两个数组中的最大求和路径
- 从两个排序的数组中找到最接近的对
- 在未排序的数组中找到最大的对和
- 整个数组中最小的较大元素
- 删除小于 next 或变得更小的数组元素
- 在线检查回文的在线算法
- 删除小于 next 或变得更小的数组元素
- 找到要翻转的零,以使连续的 1 的数目最大化
- 计算严格增加的子数组
- 流中的第 K 个最大元素
- 在两个数组中找到具有最小和的 k 对
- k 元素组与数组其余部分之间的最大差值。
- 要使中位数等于 x 的最小元素数量
- 下一个更大的元素
- 范围查询
- MO 的算法(查询平方根分解)| 系列 1(简介)
- Sqrt(或平方根)分解技术 系列 1(简介)
- 稀疏表
- 使用稀疏表进行范围总和查询
- 范围最小查询(平方根分解和稀疏表)
- 数组元素的频率范围查询
- 数组上的恒定时间范围添加操作
- 范围 LCM 查询
- 数组中给定索引范围的 GCD
- 查询给定数组中所有数字的 GCD(给定范围内的元素除外)
- 给定子数组中小于或等于给定数目的元素数
- 给定子数组中小于或等于给定数字的元素数| 第 2 组(包括更新)
- 查询值在给定范围内的数组元素的计数
- 查询二进制数组的子数组的十进制值
- 计算将 L-R 范围内的所有数字相除的元素
- 给定数组范围的 XOR 之和最大的数字
- 在给定范围内出现偶数次的数字的 XOR
- 范围查询中的数组范围查询
- 数组范围查询以搜索元素
- 数组范围查询频率与值相同的元素
- 给定范围内的最大出现次数
- 给定范围内具有相等元素的索引数
- 合并排序树以获取范围顺序统计信息
- 范围内没有重复数字的总数
- 差异数组|O(1)中的范围更新查询
- 对数组的范围查询,其每个元素都是索引值与前一个元素的 XOR
- 查找子数组是否为山脉形式
- 范围总和查询,无更新
- 子数组中的素数(带有更新)
- 在二进制数组中检查子数组表示的数字是奇数还是偶数
- 用于乘法,替换和乘积的数组查询
- 数组范围的平均值
- 执行加减命令后打印修改后的数组
- 在给定范围内对偶数或奇数概率的查询
- 数组中范围的乘积
- 计算范围内的素数
- M 个范围切换操作后的二进制数组
- 合并重叠间隔
- 检查给定间隔中是否有两个间隔重叠
- 间隔之和与除数的更新
- 多次数组范围递增操作后打印修改后的数组
- 范围最大奇数的 XOR 查询
- 查询子数组中不同元素的数量
- 计数和切换二进制数组上的查询
- 数组中的最小-最大范围查询
- 优化问题
- 最大总和连续子数组
- 通过最多买卖两次股份获得最大利润
- 查找平均数最少的子数组
- 找到两个数字之间的最小距离
- 最小化高度之间的最大差异
- 到达终点的最小跳数
- 最大总和增加子序列| DP-14
- 总和大于给定值的最小子数组
- 查找 k 个长度的最大平均子数组
- 计算最小步数以获得给定的所需数组
- 乘积小于 k 的子集数
- 查找使数组回文的最小合并操作数
- 查找不能表示为给定数组的任何子集之和的最小正整数值
- 具有最大总和的子数组的大小
- 找出任何两个元素之间的最小差异
- 使用位操作进行空间优化
- 两个二进制数组中具有相同总和的最长跨度
- 排序
- 替代排序
- 对几乎排序(或 K 排序)的数组进行排序
- 根据给定值的绝对差对数组进行排序
- 以波形形式对数组进行排序
- 将大小为 n 的数组合并为大小为 m + n 的另一个数组
- 对包含 1 到 n 个值的数组进行排序
- 通过交换相邻元素将 1 排序为 N
- 对包含两种类型元素的数组进行排序
- 按频率对元素排序| 系列 1
- 计算数组中的反转 系列 1(使用合并排序)
- 两个元素的和最接近零
- 最短无序子数组
- 排序数组所需的最小交换次数
- 两个排序数组的并集和交集
- 查找两个未排序数组的并集和交集
- 对 0、1 和 2 的数组进行排序
- 找到最小长度未排序子数组,进行排序,使整个数组排序
- 中位数为整数流(运行整数)
- 计算可能的三角形数量
- 查找数组中的对数(x,y),使得 x ^ y > y ^ x
- 计算所有等于 k 的不同对
- 打印给定整数数组的所有不同元素
- 从其对和数组构造一个数组
- 合并两个有O(1)额外空间的排序数组
- 第一个数组中的最大值与第二个数组中的最小值的乘积
- 对数(a [j] > = a [i])的对数,其中 k 个范围在(a [i],a [j])中,可被 x 整除
- 随机对为最大加权对的概率
- AP 数组中存在的最小解排列(算术级数)
- 对两个数组的最小乘积之和进行重新排列
- 将数组划分为 k 个片段,以最大化片段最小值的最大值
- 最小乘积对为正整数数组
- 计算形成最小产品三胞胎的方法
- 检查是否反转子数组使数组排序
- 使用另一个数组最大化元素
- 使两个数组的元素相同,最小增减
- 检查是否有任何间隔完全重叠
- 除子数组中的元素外,对数组进行排序
- 对除一个以外的所有数组元素进行排序
- 排序二进制数组所需的最小相邻交换
- 按数组中出现的元素顺序对链接列表进行排序
- 打印数组中排序的不同元素
- 可以单独排序以进行排序的最大分区数
- 使用 STL 根据因素数量进行排序
- 每次取下最小的钢丝绳后剩下的钢丝绳
- 数组中所有元素的排名
- 合并 3 个排序的数组
- 使数组递减的最小减法运算数
- 最大化 arr [i] * i 的总和
- 差异小于 K 的对
- 按排序顺序合并两个未排序的数组
- 从两个数组最大化唯一对
- 应用给定方程后对数组排序
- 每个数组元素的最小绝对差之和
- 查找是否可以使用一个外部数字使数组元素相同
- 两个未排序数组之间的最小差值对
- 程序检查数组是否排序(迭代和递归)
- 查找大于数组中一半元素的元素
- 使两个数组相同的最小交换
- 要添加的元素,以便数组中存在某个范围的所有元素
- 正在搜寻
- 搜索,插入和删除未排序的数组
- 在排序的数组中搜索,插入和删除
- 给定数组 A []和数字 x,请检查 A []中的对,总和为 x
- 在相邻项最多相差 k 的数组中搜索
- 在三个排序的数组中查找共同的元素
- 在无数排序数组中查找元素的位置
- 查找 1 到 n-1 之间的唯一重复元素
- 查找在数组中一次出现的元素,其中每个其他元素出现两次
- 排除某些元素的最大子数组总和
- 数组中的最大平衡和
- 数组的平衡指数
- 领导者数组
- 天花板排列
- 多数元素
- 检查排序数组中的多数元素
- 检查数组是否具有多数元素
- 两指针技术
- 查找峰元素
- 找到给定数组中的两个重复元素
- 在给定的数组中找到一个固定点(等于索引的值)
- 查找给定总和的子数组| 系列 1(负数)
- 数组中的最大三元组和
- 来自三个数组的最小差异三元组
- 查找一个三元组,将其总和成给定值
- 找到所有零和的三元组
- 所有合计给定值的唯一三元组
- 计算总数小于给定值的三元组
- 打印形成 AP 的排序数组中的所有三元组
- XOR 为零的唯一三元组数
- 找到一个三元组,使得两个和等于第三元素
- 查找出现次数的奇数
- 查找丢失的号码
- 计算排序数组中的出现次数(或频率)
- 给定一个已排序的数组和一个数字 x,在数组中找到总和最接近 x 的对
- 在排序的二进制数组中计数 1
- 在整数数组中找到第一个重复元素
- 从重复的数组中查找丢失的元素
- 找到重复的和丢失的| 添加了 3 种新方法
- 在未排序的数组中找到出现奇数的两个数字
- 找到具有给定差异的一对
- 找到四个总和为给定值的元素| 集合 1(n ^ 3 解)
- 找到四个总和为给定值的元素| 系列 2
- 查找是否有一个总和为 0 的子数组
- 在相邻元素之间的差为 1 的数组中搜索元素
- 一系列不同元素中的第三大元素
- 检查数组中是否存在两个元素的总和等于数组其余部分的总和
- 检查给定数组是否包含彼此之间 k 距离内的重复元素
- 使用最少的比较次数搜索未排序数组中的元素
- 连续元素排序数组中仅重复元素的计数
- 在频率大于或等于 n / 2 的排序数组中查找元素。
- 圆形数组中相邻元素的最小绝对差
- 在数组中找到第一个,第二个和第三个最小元素
- 程序来查找数组的最小(或最大)元素
- 每个数组元素中另一个数组中最接近的较大元素
- 计算O(1)额外空间和O(n)时间中数组中所有元素的频率
- 与给定的总和和距末端的最大最短距离配对
- 从数组中删除一个元素(使用两次遍历和一次遍历)
- 计算给定数组中大小为 3 的反转
- 计算给定总和的对
- 对排序向量中的二分搜索
- 困雨水
- 替换元素会使数组元素连续
- 排序数组中的第 k 个缺失元素
- O(log(min(n(n,m)))中具有不同大小的两个排序数组的中位数
- 从两个排序的数组中打印不常见的元素
- 非重复元素
- 数组中最频繁的元素
- 数组中最少的元素
- m 个元素的两个子集之间的最大差
- n 个数组中升序元素的最大和
- 配对使得一个是其他的幂倍
- 查找数组中对的数量,以使它们的 XOR 为 0
- 两次最大出现之间的最小距离
- 如果我们在数组中每次成功搜索后加倍,则找到最终值
- 排序数组中的最后一个重复元素
- 找到一个数组元素,使所有元素都可被它整除
- 以原始顺序查找数组的 k 个最大元素
- 数组中的最大值,至少是其他元素的两倍
- 连续步骤到屋顶
- 两个大小的组之间的最大差异
- 两个大小的组之间的最小差异
- 未排序整数列表中最接近的数字
- 值和索引和的最大绝对差
- 数组中局部极值的数量
- 检查数组是否具有多数元素
- 查找数组中最接近的数字
- 最大和的对数
- 按原始顺序打印给定数组中的 n 个最小元素
- 查找给定数组中缺少的前 k 个自然数
- 数组中的高尚整数(大于等于的元素数等于 value)
- 两个数组对的绝对差的最小和
- 查找数组中非重复(不同)元素的总和
- 检查是否可以从给定数组形成算术级数
- 数组的最小乘积子集
- 计算选择差异最大的对的方法
- 每次成功搜索后通过将元素加倍来重复搜索
- 允许负数的数组中成对乘积的最大和
- 矩阵
- 旋转矩阵元素
- 将方形矩阵旋转 90 度| 系列 1
- 将矩阵旋转 90 度,而无需使用任何额外空间| 系列 2
- 将矩阵旋转 180 度
- 用 K 元素逆时针旋转矩阵的每个环
- 将图像旋转 90 度
- 检查矩阵的所有行是否都是彼此旋转
- 排序给定矩阵
- 查找最大数量为 1 的行
- 在按行排序的矩阵中找到中位数
- 矩阵乘法| 递归的
- 程序将两个矩阵相乘
- 矩阵的标量乘法程序
- 程序打印数组的下三角和上三角矩阵
- 查找矩阵所有行共有的不同元素
- 以螺旋形式打印给定的矩阵
- 查找矩阵中每一行的最大元素
- 在矩阵中查找唯一元素
- 将矩阵元素逐行移动 k
- 矩阵的不同运算
- 以逆时针螺旋形式打印给定矩阵
- 交换方矩阵的主要和次要对角线
- 矩阵中的最大路径总和
- 矩阵对角元素的正方形
- 沿给定方向移动矩阵元素并添加具有相同值的元素
- 按升序对矩阵行进行排序,然后按降序对列进行排序
- 矩阵中间行和列的总和
- 矩阵的按行遍历与按列遍历
- 向右旋转矩阵 K 次
- 检查幂等矩阵的程序
- 程序检查对合矩阵
- 矩阵中第一行和最后一行的交换元素
- zag-zag 方式打印矩阵
- 二维数组中的按行排序
- 马尔可夫矩阵程序
- 检查对角矩阵和标量矩阵的程序
- 按行和列对矩阵进行排序
- 查找岛屿数| 系列 1(使用 DFS)
- 魔术广场| 偶数订单
- 魔术广场
- 检查给定矩阵是否为幻方
- 检查给定矩阵是否为幻方
- 两种矩阵的 Kronecker 积
- 计数总和可分为“ k”的子矩阵
- 对角占优矩阵
- 使矩阵的每一行和每一列相等所需的最少操作
- 计算大小为 n 的矩阵中 k 的频率,其中 matrix(i,j)= i + j
- 给定 1、2、3……k 以之字形打印它们。
- 皇后可以在棋盘上移动的障碍物数量
- 矩阵中 4 个相邻元素的最大积
- 使二进制矩阵对称所需的最小翻转
- 程序检查矩阵是否为下三角
- 程序检查矩阵是否为上三角
- 矩阵中偶数和奇数的频率
- 矩阵的中心元素等于对角线的一半
- 身份矩阵程序
- 程序用矩阵的下对角元素交换上对角元素。
- 稀疏矩阵表示| 系列 3(CSR)
- 填充矩阵以使所有行和所有列的乘积等于 1 的方式
- 矩阵对角线的镜像
- 查找二进制矩阵中是否有一个角为 1 的矩形
- 查找所有填充有 0 的矩形
- 矩阵或网格中两个单元之间的最短距离
- 计算二进制矩阵中 1 和 0 的集合
- 搜索按行和按列排序的矩阵
- 创建具有 O 和 X 的交替矩形的矩阵
- 矩阵的锯齿形(或对角线)遍历
- 原位(固定空间)M x N 大小的矩阵转置| 更新
- 排序从 0 到 n ^ 2 – 1 的数字矩阵的最低成本
- 二进制矩阵中的唯一像元
- 计算特殊矩阵中等于 x 的条目
- 检查给定矩阵是否稀疏
- 方矩阵的两个对角线中的行式公共元素
- 检查矩阵中第 i 行和第 i 列的总和是否相同
- 查找最大数为 1 的二进制矩阵的行号
- 程序检查矩阵是否对称
- 通过遵循单元格值来查找二维数组是否被完全遍历
- 程序以 Z 格式打印矩阵
- 在矩阵中从左上到右下打印所有回文路径
- 骑士的可能举动
- 有效地计算矩阵的对角线总和
- 矩阵的边界元素
- 从点开始以螺旋形式打印矩阵
- 以蛇形图案打印矩阵
- 矩阵对角线互换程序
- 找出两个对角线之和之间的差
- 从给定的二叉树构造祖先矩阵
- 从祖先矩阵构造树
- 圆形矩阵(以螺旋方式构造数字 1 到 m * n 的矩阵)
- Sudoku Generator 程序
- 康威人生游戏计划
- 矩阵中沙漏的最大和
- 方阵中的最大值和最小值。
- 以防螺旋形式打印矩阵
- 查找矩阵的法线和迹线的程序
- 以各种方式对矩阵进行排序
- 设置二进制矩阵的所有元素所需的最少操作
- 以反向螺旋形式打印给定的矩阵
- C 程序检查矩阵是否倾斜对称
- 矩阵元素的总和,其中每个元素是行和列的整数除法
- 稀疏矩阵及其表示| 系列 2(使用列表和键字典)
- 查找使两个矩阵相等的变换数
- 形成矩阵线圈
- 每个元素是其行号和列号的绝对差的矩阵总和
- 检查二进制矩阵中的水平和垂直对称性
- 每个值为 0 或 n 的矩阵的最大行列式
- 螺旋奇数阶方阵的两个对角线之和
- 在二进制矩阵中找到具有最大位差的行对
- 查找矩阵中给定行的所有置换行
- 在二进制矩阵中查找以 1s 形成的形状的周长
- 在矩阵中打印具有相同矩形和的单元格
- 以对角线图案打印矩阵
- 矩阵中两行元素之和的最大差
- 查找具有给定总和的对,以便该对的元素位于不同的行中
- 二进制矩阵中所有零的总覆盖率
- 用行或列的最大 GCD 替换每个矩阵元素
- 计算矩阵中所有排序的行
- 矩阵查询
- 矩阵中的最大 XOR 值
- 可以从下到右传输光线的最大反射镜
- 最后一个方块的方向
- 以矩阵的螺旋形式打印第 K 个元素
- 查找给定的矩阵是否为 Toeplitz
- 在按行和按列排序的矩阵中计数零
- 在列明智和行明智排序矩阵中计算负数
- 在二进制矩阵中查找所有位形成的最大“ +”的大小
- 返回扩展矩阵中的前一个元素
- 使用O(1)额外空间打印 n x n 螺旋矩阵
- 二进制迷宫中的最短路径
- 查找矩阵中图案的方向
- 在矩阵中查找特定对
- 打印给定大小的最大和平方子矩阵
- 给定矩阵的所有行中的公共元素
- 按特定顺序就地转换矩阵
- 布尔矩阵问题
- 给定布尔矩阵,找到 k,使第 k 行中的所有元素均为 0,第 k 列为 1。
- 在给定的布尔矩阵中打印唯一行
- 找到 1 的最大矩形,并允许交换列
- 给定井字棋盘配置的有效性
- 子矩阵总和查询
- 矩阵排名程序
- 全为 1 的最大尺寸矩形二进制子矩阵
- 全为 1 的最大尺寸正方形子矩阵
- 查找矩阵中除给定单元格的行和/或列中的元素以外的所有元素的总和?
- 计算每个岛按行和列分隔的岛数
- 在给定的按行排序的矩阵的所有行中找到一个公共元素
- 给定矩阵“ O”和“ X”,如果被“ X”包围,则将“ O”替换为“ X”
- 给定矩阵“ O”和“ X”,找到被“ X”包围的最大子正方形
- 洪水填充算法–如何在 paint 中实现 fill()?
- 从行和列的排序矩阵中按排序顺序打印所有元素
- 给定一个 n x n 方阵,求出大小为 k x k 的所有子方和
- 查找矩阵转置的程序
- 用于添加两个矩阵的程序
- 矩阵减法程序
- 使用两次遍历收集网格中的最大点
- 在死胡同之前收集最多硬币
- 正好有 k 个硬币的路径数
- 查找从给定起始字符开始的最长连续路径的长度
- 在给定约束条件下找到矩阵中的最长路径
- 到达目的地的最低初始点
- 分而治之| 第 5 组(Strassen 的矩阵乘法)
- 2D 矩阵中的最大和矩形| DP-27
- 杂项
- 子数组/子字符串与子序列以及生成它们的程序
- 产品数组难题
- 具有给定乘积的子数组数
- 链表与数组
- 检查数组元素是否连续 新增方法 3
- 查找一个数组是否是另一个数组的子集 新增方法 3
- 在一个数组中实现两个堆栈
- 查找两个排序数组的相对补码
- 通过 k 次运算的最小增量以使所有元素相等
- 最小化三个不同排序数组的(max(A [i],B [j],C [k])– min(A [i],B [j],C [k]))