💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
# 每个值为 0 或 n 的矩阵的最大行列式 > 原文: [https://www.geeksforgeeks.org/maximum-determinant-matrix-every-values-either-0-n/](https://www.geeksforgeeks.org/maximum-determinant-matrix-every-values-either-0-n/) 我们给定一个正数 n,我们必须找到一个 3 * 3 矩阵,该矩阵可以由 0 或 n 的组合形成,并且具有最大的行列式。 **示例**: ``` Input : n = 3 Output : Maximum determinant = 54 Resultant Matrix : 3 3 0 0 3 3 3 0 3 Input : n = 13 Output : Maximum determinant = 4394 Resultant Matrix : 13 13 0 0 13 13 13 0 13 ``` **解释**: 对于元素为 0 或 n 的任何 3 * 3 矩阵,最大可能行列式为 **2 *(n ^ 3)。** 。 具有最大行列式的矩阵的形式也为: n n 0 0 n n n 0 0 ## C++ ```cpp // C++ program to find  maximum possible determinant // of 0/n matrix. #include <bits/stdc++.h> using namespace std; // Function for maximum determinant int maxDet(int n) {     return (2*n*n*n); } // Function to print resulatant matrix void resMatrix ( int n) {     for (int i = 0; i < 3; i++)     {         for (int j = 0; j < 3; j++)         {             // three position where 0 appears             if (i == 0 && j == 2)                 cout << "0 ";             else if (i == 1 && j == 0)                 cout << "0 ";             else if (i == 2 && j == 1)                 cout << "0 ";             // position where n appears             else                 cout << n << " ";         }         cout << "\n";     } }  // Driver code int main() {     int n = 15;     cout << "Maximum Determinant = " << maxDet(n);     cout << "\nResultant Matrix :\n";     resMatrix(n);      return 0; } ``` ## Java ```java // Java program to find maximum possible // determinant of 0/n matrix. import java.io.*; public class GFG { // Function for maximum determinant static int maxDet(int n) {     return (2 * n * n * n); } // Function to print resulatant matrix void resMatrix(int n) {     for (int i = 0; i < 3; i++)     {         for (int j = 0; j < 3; j++)         {             // three position where 0 appears             if (i == 0 && j == 2)                 System.out.print("0 ");             else if (i == 1 && j == 0)                 System.out.print("0 ");             else if (i == 2 && j == 1)                 System.out.print("0 ");             // position where n appears             else                 System.out.print(n +" ");         }         System.out.println("");     } }      // Driver code     static public void main (String[] args)     {             int n = 15;             GFG geeks=new GFG();             System.out.println("Maximum Determinant = "                                 + maxDet(n));             System.out.println("Resultant Matrix :");              geeks.resMatrix(n);      } } // This code is contributed by vt_m. ``` ## Python3 ```py # Python 3 program to find maximum # possible determinant of 0/n matrix.  # Function for maximum determinant def maxDet(n):     return 2 * n * n * n # Function to print resulatant matrix  def resMatrix(n):     for i in range(3):         for j in range(3):             # three position where 0 appears             if i == 0 and j == 2:                 print("0", end = " ")             elif i == 1 and j == 0:                 print("0", end = " ")             elif i == 2 and j == 1:                 print("0", end = " ")             # position where n appears             else:                 print(n, end = " ")         print("\n") # Driver code n = 15 print("Maximum Detrminat=", maxDet(n)) print("Resultant Matrix:") resMatrix(n) # This code is contributed by Shrikant13 ``` ## C# ```cs // C# program to find maximum possible // determinant of 0/n matrix. using System; public class GFG { // Function for maximum determinant static int maxDet(int n) {     return (2 * n * n * n); } // Function to print resulatant matrix void resMatrix(int n) {     for (int i = 0; i < 3; i++)     {         for (int j = 0; j < 3; j++)         {             // three position where 0 appears             if (i == 0 && j == 2)                 Console.Write("0 ");             else if (i == 1 && j == 0)                 Console.Write("0 ");             else if (i == 2 && j == 1)                 Console.Write("0 ");             // position where n appears             else                 Console.Write(n +" ");         }         Console.WriteLine("");     } }      // Driver code     static public void Main (String []args)     {             int n = 15;             GFG geeks=new GFG();             Console.WriteLine("Maximum Determinant = "                                 + maxDet(n));             Console.WriteLine("Resultant Matrix :");              geeks.resMatrix(n);      } } // This code is contributed by vt_m. ``` ## PHP ```php <?php // PHP program to find maximum  // possible determinant of 0/n matrix. // Function for maximum determinant function maxDet($n) {     return (2 * $n * $n * $n); } // Function to print  // resulatant matrix function resMatrix ( $n) {     for ($i = 0; $i < 3; $i++)     {         for ($j = 0; $j < 3; $j++)         {             // three position              // where 0 appears             if ($i == 0 && $j == 2)                 echo "0 ";             else if ($i == 1 && $j == 0)                 echo "0 ";             else if ($i == 2 && $j == 1)                 echo "0 ";             // position where n appears             else                 echo $n , " ";         }     echo "\n";     } }  // Driver code $n = 15; echo "Maximum Determinant = " ,                      maxDet($n); echo "\nResultant Matrix :\n"; resMatrix($n);  // This code is contributed // by nitin mittal.  ?> ``` **输出**: ``` Maximum Determinant = 6750 Resultant Matrix : 15 15 0 0 15 15 15 0 15 ``` **练习**:将上述解扩展为广义的 k x k 矩阵。 本文由 [**Shivam Pradhan(anuj_charm)**](https://www.facebook.com/anuj.charm) 提供。 如果您喜欢 GeeksforGeeks 并希望做出贡献,则还可以使用 [tribution.geeksforgeeks.org](http://www.contribute.geeksforgeeks.org) 撰写文章,或将您的文章邮寄至 tribution@geeksforgeeks.org。 查看您的文章出现在 GeeksforGeeks 主页上,并帮助其他 Geeks。