ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
# 计算二进制矩阵中 1 和 0 的集合 > 原文: [https://www.geeksforgeeks.org/counting-sets-of-1s-and-0s-in-a-binary-matrix/](https://www.geeksforgeeks.org/counting-sets-of-1s-and-0s-in-a-binary-matrix/) 给定一个 n×m 的二进制矩阵,计算可以在行或列中形成一个或多个相同值的集合的数量。 **示例**: ``` Input: 1 0 1 0 1 0 Output: 8 Explanation: There are six one-element sets (three 1s and three 0s). There are two two- element sets, the first one consists of the first and the third cells of the first row. The second one consists of the first and the third cells of the second row. Input: 1 0 1 1 Output: 6 ``` x 个元素的非空子集数量为 2 <sup>x</sup> –1。我们遍历每一行并计算 1 和 0 的像元数。 对于每个 u 零和 v 个,总集合为 2 <sup>u</sup> – 1 + 2 <sup>v</sup> –1。然后遍历所有列并计算相同的值并计算总和。 我们最终从总和中减去 m x n,因为单个元素被考虑了两次。 ## CPP ``` // CPP program to compute number of sets // in a binary matrix. #include <bits/stdc++.h> using namespace std; const int m = 3; // no of columns const int n = 2; // no of rows // function to calculate the number of // non empty sets of cell long long countSets(int a[n][m]) {        // stores the final answer      long long res = 0;     // traverses row-wise      for (int i = 0; i < n; i++)     {         int u = 0, v = 0;          for (int j = 0; j < m; j++)              a[i][j] ? u++ : v++;                   res += pow(2,u)-1 + pow(2,v)-1;      }     // traverses column wise      for (int i = 0; i < m; i++)     {         int u = 0, v = 0;          for (int j = 0; j < n; j++)               a[j][i] ? u++ : v++;           res += pow(2,u)-1 + pow(2,v)-1;      }     // at the end subtract n*m as no of     // single sets have been added twice.     return res-(n*m); } // driver program to test the above function. int main() {     int a[][3] = {(1, 0, 1),                   (0, 1, 0)};     cout << countSets(a);      return 0; } ``` ## Java ```java // Java program to compute number of sets // in a binary matrix. class GFG { static final int m = 3; // no of columns static final int n = 2; // no of rows // function to calculate the number of // non empty sets of cell static long countSets(int a[][]) {     // stores the final answer     long res = 0;     // traverses row-wise     for (int i = 0; i < n; i++) {     int u = 0, v = 0;     for (int j = 0; j < m; j++) {         if (a[i][j] == 1)         u++;         else         v++;     }     res += Math.pow(2, u) - 1 + Math.pow(2, v) - 1;     }     // traverses column wise     for (int i = 0; i < m; i++) {     int u = 0, v = 0;     for (int j = 0; j < n; j++) {         if (a[j][i] == 1)         u++;         else         v++;     }     res += Math.pow(2, u) - 1 + Math.pow(2, v) - 1;     }     // at the end subtract n*m as no of     // single sets have been added twice.     return res - (n * m); } // Driver code public static void main(String[] args) {     int a[][] = {{1, 0, 1}, {0, 1, 0}};     System.out.print(countSets(a)); } } // This code is contributed by Anant Agarwal. ``` ## Python3 ```py # Python3 program to compute number of sets  # in a binary matrix.  m = 3 # no of columns  n = 2 # no of rows  # function to calculate the number of  # non empty sets of cell  def countSets(a):     # stores the final answer      res = 0     # traverses row-wise      for i in range(n):         u = 0         v = 0         for j in range(m):             if a[i][j]:                 u += 1             else:                  v += 1         res += pow(2, u) - 1 + pow(2, v) - 1     # traverses column wise      for i in range(m):         u = 0         v = 0         for j in range(n):             if a[j][i]:                 u += 1             else:                  v += 1         res += pow(2, u) - 1 + pow(2, v) - 1     # at the end subtract n*m as no of      # single sets have been added twice.      return res - (n*m)  # Driver program to test the above function.  a = [[1, 0, 1],[0, 1, 0]]  print(countSets(a)) # This code is conributed by shubhamsingh10 ``` ## C# ```cs // C# program to compute number of // sets in a binary matrix. using System; class GFG {     static int m = 3; // no of columns     static int n = 2; // no of rows     // function to calculate the number of     // non empty sets of cell     static long countSets(int [,]a)     {         // stores the final answer         long res = 0;         // Traverses row-wise         for (int i = 0; i < n; i++)         {             int u = 0, v = 0;             for (int j = 0; j < m; j++)             {                 if (a[i,j] == 1)                     u++;                 else                     v++;             }             res += (long)(Math.Pow(2, u) - 1                        + Math.Pow(2, v)) - 1;         }         // Traverses column wise         for (int i = 0; i < m; i++)         {             int u = 0, v = 0;             for (int j = 0; j < n; j++)             {                 if (a[j,i] == 1)                     u++;                 else                     v++;             }             res += (long)(Math.Pow(2, u) - 1                        + Math.Pow(2, v)) - 1;         }         // at the end subtract n*m as no of         // single sets have been added twice.         return res - (n * m);     }     // Driver code     public static void Main()     {         int [,]a = {{1, 0, 1}, {0, 1, 0}};         Console.WriteLine(countSets(a));     } } // This code is contributed by vt_m. ``` ## PHP ```php <?php // PHP program to compute // number of sets // in a binary matrix. // no of columns $m = 3;  // no of rows $n = 2;  // function to calculate the number  // of non empty sets of cell function countSets($a) {      global $m, $n;     // stores the final answer      $res = 0;     // traverses row-wise      for ($i = 0; $i < $n; $i++)     {         $u = 0; $v = 0;          for ( $j = 0; $j < $m; $j++)              $a[$i][$j] ? $u++ : $v++;              $res += pow(2, $u) - 1 + pow(2, $v) - 1;      }      // traverses column wise      for ($i = 0; $i < $m; $i++)     {         $u = 0;$v = 0;          for ($j = 0; $j < $n; $j++)              $a[$j][$i] ? $u++ : $v++;          $res += pow(2, $u) - 1 +                  pow(2, $v) - 1;      }     // at the end subtract     // n*m as no of single     // sets have been added      // twice.     return $res-($n*$m); }     // Driver Code     $a = array(array(1, 0, 1),                array(0, 1, 0));     echo countSets($a);  // This code is contributed by anuj_67\. ?> ``` Output: ``` 8 ``` 时间复杂度:O(n * m) 本文由 [**Raj**](https://www.facebook.com/raja.vikramaditya.7) 贡献。 如果您喜欢 GeeksforGeeks 并希望做出贡献,则还可以使用 [tribution.geeksforgeeks.org](http://www.contribute.geeksforgeeks.org) 撰写文章,或将您的文章邮寄至 tribution@geeksforgeeks.org。 查看您的文章出现在 GeeksforGeeks 主页上,并帮助其他 Geeks。