## 13.1 一个例子:仇恨犯罪和收入不平等
2017 年,网站 fivethirtyeight.com 发表了一篇题为“仇恨犯罪率上升与收入不平等(htg1)”的文章,讨论了 2016 年总统选举后仇恨犯罪率与收入不平等之间的关系。报道分析了来自联邦调查局和南方贫困法中心的仇恨犯罪数据,并据此报告:
> “我们发现,收入不平等是全美国调整人口仇恨犯罪和仇恨事件的最重要决定因素”。
此分析的数据包含在`fivethirtyeight`r 包中,这使得我们很容易访问它们。报道中的分析集中在收入不平等(定义为一个叫做 _ 基尼指数 _ 的量)与各州仇恨犯罪流行率之间的关系。
### 13.1.1 量化不平等:基尼指数
在我们查看报道中的分析之前,首先要了解如何使用基尼指数来量化不平等。基尼指数通常用一条曲线来定义,这条曲线描述了收入与收入水平等于或小于该水平的人口比例之间的关系,称为 _ 洛伦兹曲线 _。然而,另一种更直观的思考方式是:收入之间的相对平均绝对差异除以二(摘自[https://en.wikipedia.org/wiki/gini_coefficient](https://en.wikipedia.org/wiki/Gini_coefficient)):
![](https://img.kancloud.cn/ad/31/ad314b054160eead69f3a84406806865_164x112.jpg)
![Lorenz curves for A) perfect equality, B) normally distributed income, and C) high inequality (equal income except for one very wealthy individual).](https://img.kancloud.cn/56/58/56586b47bf3221129a3aa7e31c4411ae_768x768.png)
图 13.1 洛伦兹曲线表示 a)完全平等,b)正态分布收入,c)高度不平等(除一个非常富有的个人外,收入相等)。
图[13.1](#fig:gini0)显示了几种不同收入分配的洛伦兹曲线。左上方的面板(A)显示了一个例子,其中有 10 个人,每个人的收入完全相同。两个点之间的间隔长度相等,表明每个人在总收入中所占的份额相同。右上角的面板(B)显示了一个收入正态分布的例子。左下角的面板显示了一个不平等程度很高的例子:每个人的收入都是平等的(40000 美元),只有一个人的收入是 40000000 美元。根据美国人口普查,2010 年美国的基尼指数为 0.469,大约在我们的正态分布和最大不相等的例子之间下降了一半。
- 前言
- 0.1 本书为什么存在?
- 0.2 你不是统计学家-我们为什么要听你的?
- 0.3 为什么是 R?
- 0.4 数据的黄金时代
- 0.5 开源书籍
- 0.6 确认
- 1 引言
- 1.1 什么是统计思维?
- 1.2 统计数据能为我们做什么?
- 1.3 统计学的基本概念
- 1.4 因果关系与统计
- 1.5 阅读建议
- 2 处理数据
- 2.1 什么是数据?
- 2.2 测量尺度
- 2.3 什么是良好的测量?
- 2.4 阅读建议
- 3 概率
- 3.1 什么是概率?
- 3.2 我们如何确定概率?
- 3.3 概率分布
- 3.4 条件概率
- 3.5 根据数据计算条件概率
- 3.6 独立性
- 3.7 逆转条件概率:贝叶斯规则
- 3.8 数据学习
- 3.9 优势比
- 3.10 概率是什么意思?
- 3.11 阅读建议
- 4 汇总数据
- 4.1 为什么要总结数据?
- 4.2 使用表格汇总数据
- 4.3 分布的理想化表示
- 4.4 阅读建议
- 5 将模型拟合到数据
- 5.1 什么是模型?
- 5.2 统计建模:示例
- 5.3 什么使模型“良好”?
- 5.4 模型是否太好?
- 5.5 最简单的模型:平均值
- 5.6 模式
- 5.7 变异性:平均值与数据的拟合程度如何?
- 5.8 使用模拟了解统计数据
- 5.9 Z 分数
- 6 数据可视化
- 6.1 数据可视化如何拯救生命
- 6.2 绘图解剖
- 6.3 使用 ggplot 在 R 中绘制
- 6.4 良好可视化原则
- 6.5 最大化数据/墨水比
- 6.6 避免图表垃圾
- 6.7 避免数据失真
- 6.8 谎言因素
- 6.9 记住人的局限性
- 6.10 其他因素的修正
- 6.11 建议阅读和视频
- 7 取样
- 7.1 我们如何取样?
- 7.2 采样误差
- 7.3 平均值的标准误差
- 7.4 中心极限定理
- 7.5 置信区间
- 7.6 阅读建议
- 8 重新采样和模拟
- 8.1 蒙特卡罗模拟
- 8.2 统计的随机性
- 8.3 生成随机数
- 8.4 使用蒙特卡罗模拟
- 8.5 使用模拟统计:引导程序
- 8.6 阅读建议
- 9 假设检验
- 9.1 无效假设统计检验(NHST)
- 9.2 无效假设统计检验:一个例子
- 9.3 无效假设检验过程
- 9.4 现代环境下的 NHST:多重测试
- 9.5 阅读建议
- 10 置信区间、效应大小和统计功率
- 10.1 置信区间
- 10.2 效果大小
- 10.3 统计能力
- 10.4 阅读建议
- 11 贝叶斯统计
- 11.1 生成模型
- 11.2 贝叶斯定理与逆推理
- 11.3 进行贝叶斯估计
- 11.4 估计后验分布
- 11.5 选择优先权
- 11.6 贝叶斯假设检验
- 11.7 阅读建议
- 12 分类关系建模
- 12.1 示例:糖果颜色
- 12.2 皮尔逊卡方检验
- 12.3 应急表及双向试验
- 12.4 标准化残差
- 12.5 优势比
- 12.6 贝叶斯系数
- 12.7 超出 2 x 2 表的分类分析
- 12.8 注意辛普森悖论
- 13 建模持续关系
- 13.1 一个例子:仇恨犯罪和收入不平等
- 13.2 收入不平等是否与仇恨犯罪有关?
- 13.3 协方差和相关性
- 13.4 相关性和因果关系
- 13.5 阅读建议
- 14 一般线性模型
- 14.1 线性回归
- 14.2 安装更复杂的模型
- 14.3 变量之间的相互作用
- 14.4“预测”的真正含义是什么?
- 14.5 阅读建议
- 15 比较方法
- 15.1 学生 T 考试
- 15.2 t 检验作为线性模型
- 15.3 平均差的贝叶斯因子
- 15.4 配对 t 检验
- 15.5 比较两种以上的方法
- 16 统计建模过程:一个实例
- 16.1 统计建模过程
- 17 做重复性研究
- 17.1 我们认为科学应该如何运作
- 17.2 科学(有时)是如何工作的
- 17.3 科学中的再现性危机
- 17.4 有问题的研究实践
- 17.5 进行重复性研究
- 17.6 进行重复性数据分析
- 17.7 结论:提高科学水平
- 17.8 阅读建议
- References