# 14 一般线性模型
请记住,在本书的早期,我们描述了统计的基本模型:
![](https://img.kancloud.cn/09/83/09837adc3145ec98d63db5b36d33995a_202x15.jpg)
其中,我们的一般目标是找到最大限度地减少错误的模型,并受一些其他约束(例如保持模型相对简单,以便我们可以在特定数据集之外进行归纳)。在本章中,我们将重点介绍这种方法的特殊实现,即 _ 一般线性模型 _(或 GLM)。您已经在前面一章中看到了将模型拟合到数据的一般线性模型,我们在 nhanes 数据集中将高度建模为年龄的函数;在这里,我们将更全面地介绍 GLM 的概念及其许多用途。
在讨论一般线性模型之前,我们先定义两个对我们的讨论很重要的术语:
* _ 因变量 _:这是我们的模型要解释的结果变量(通常称为 _y_)
* _ 自变量 _:这是一个我们希望用来解释因变量的变量(通常称为 _x_)。
可能有多个自变量,但对于本课程,我们的分析中只有一个因变量。
一般线性模型是由独立变量的 _ 线性组合 _ 组成的,每个独立变量乘以一个权重(通常称为希腊字母 beta-![](https://img.kancloud.cn/76/d0/76d0eb69ba026a58bbe3edd275fee712_11x16.jpg)),确定相对贡献。模型预测的自变量。
作为一个例子,让我们为学习时间和考试成绩之间的关系生成一些模拟数据(参见图[14.1](#fig:StudytimeGrades))。
```r
# create simulated data for example
set.seed(12345)
# the number of points that having a prior class increases grades
betas <- c(6, 5)
df <-
tibble(
studyTime = c(2, 3, 5, 6, 6, 8, 10, 12) / 3,
priorClass = c(0, 1, 1, 0, 1, 0, 1, 0)
) %>%
mutate(
grade =
studyTime * betas[1] +
priorClass * betas[2] +
round(rnorm(8, mean = 70, sd = 5))
)
```
![Relation between study time and grades](https://img.kancloud.cn/1b/9a/1b9a014af99342e48b17fbccabe1b26e_384x384.png)
图 14.1 学习时间与成绩的关系
鉴于这些数据,我们可能希望参与三项基本统计活动:
* _ 描述一下 _:年级和学习时间之间的关系有多强?
* _ 决定 _:年级和学习时间之间有统计学意义的关系吗?
* _ 预测 _:给定特定的学习时间,我们期望达到什么级别?
在最后一章中,我们学习了如何使用相关系数来描述两个变量之间的关系,因此我们可以使用它来描述这里的关系,并测试相关性是否具有统计意义:
```r
# compute correlation between grades and study time
corTestResult <- cor.test(df$grade, df$studyTime, alternative = "greater")
corTestResult
```
```r
##
## Pearson's product-moment correlation
##
## data: df$grade and df$studyTime
## t = 2, df = 6, p-value = 0.05
## alternative hypothesis: true correlation is greater than 0
## 95 percent confidence interval:
## 0.014 1.000
## sample estimates:
## cor
## 0.63
```
相关性很高,但由于样本量很小,几乎没有达到统计显著性。
- 前言
- 0.1 本书为什么存在?
- 0.2 你不是统计学家-我们为什么要听你的?
- 0.3 为什么是 R?
- 0.4 数据的黄金时代
- 0.5 开源书籍
- 0.6 确认
- 1 引言
- 1.1 什么是统计思维?
- 1.2 统计数据能为我们做什么?
- 1.3 统计学的基本概念
- 1.4 因果关系与统计
- 1.5 阅读建议
- 2 处理数据
- 2.1 什么是数据?
- 2.2 测量尺度
- 2.3 什么是良好的测量?
- 2.4 阅读建议
- 3 概率
- 3.1 什么是概率?
- 3.2 我们如何确定概率?
- 3.3 概率分布
- 3.4 条件概率
- 3.5 根据数据计算条件概率
- 3.6 独立性
- 3.7 逆转条件概率:贝叶斯规则
- 3.8 数据学习
- 3.9 优势比
- 3.10 概率是什么意思?
- 3.11 阅读建议
- 4 汇总数据
- 4.1 为什么要总结数据?
- 4.2 使用表格汇总数据
- 4.3 分布的理想化表示
- 4.4 阅读建议
- 5 将模型拟合到数据
- 5.1 什么是模型?
- 5.2 统计建模:示例
- 5.3 什么使模型“良好”?
- 5.4 模型是否太好?
- 5.5 最简单的模型:平均值
- 5.6 模式
- 5.7 变异性:平均值与数据的拟合程度如何?
- 5.8 使用模拟了解统计数据
- 5.9 Z 分数
- 6 数据可视化
- 6.1 数据可视化如何拯救生命
- 6.2 绘图解剖
- 6.3 使用 ggplot 在 R 中绘制
- 6.4 良好可视化原则
- 6.5 最大化数据/墨水比
- 6.6 避免图表垃圾
- 6.7 避免数据失真
- 6.8 谎言因素
- 6.9 记住人的局限性
- 6.10 其他因素的修正
- 6.11 建议阅读和视频
- 7 取样
- 7.1 我们如何取样?
- 7.2 采样误差
- 7.3 平均值的标准误差
- 7.4 中心极限定理
- 7.5 置信区间
- 7.6 阅读建议
- 8 重新采样和模拟
- 8.1 蒙特卡罗模拟
- 8.2 统计的随机性
- 8.3 生成随机数
- 8.4 使用蒙特卡罗模拟
- 8.5 使用模拟统计:引导程序
- 8.6 阅读建议
- 9 假设检验
- 9.1 无效假设统计检验(NHST)
- 9.2 无效假设统计检验:一个例子
- 9.3 无效假设检验过程
- 9.4 现代环境下的 NHST:多重测试
- 9.5 阅读建议
- 10 置信区间、效应大小和统计功率
- 10.1 置信区间
- 10.2 效果大小
- 10.3 统计能力
- 10.4 阅读建议
- 11 贝叶斯统计
- 11.1 生成模型
- 11.2 贝叶斯定理与逆推理
- 11.3 进行贝叶斯估计
- 11.4 估计后验分布
- 11.5 选择优先权
- 11.6 贝叶斯假设检验
- 11.7 阅读建议
- 12 分类关系建模
- 12.1 示例:糖果颜色
- 12.2 皮尔逊卡方检验
- 12.3 应急表及双向试验
- 12.4 标准化残差
- 12.5 优势比
- 12.6 贝叶斯系数
- 12.7 超出 2 x 2 表的分类分析
- 12.8 注意辛普森悖论
- 13 建模持续关系
- 13.1 一个例子:仇恨犯罪和收入不平等
- 13.2 收入不平等是否与仇恨犯罪有关?
- 13.3 协方差和相关性
- 13.4 相关性和因果关系
- 13.5 阅读建议
- 14 一般线性模型
- 14.1 线性回归
- 14.2 安装更复杂的模型
- 14.3 变量之间的相互作用
- 14.4“预测”的真正含义是什么?
- 14.5 阅读建议
- 15 比较方法
- 15.1 学生 T 考试
- 15.2 t 检验作为线性模型
- 15.3 平均差的贝叶斯因子
- 15.4 配对 t 检验
- 15.5 比较两种以上的方法
- 16 统计建模过程:一个实例
- 16.1 统计建模过程
- 17 做重复性研究
- 17.1 我们认为科学应该如何运作
- 17.2 科学(有时)是如何工作的
- 17.3 科学中的再现性危机
- 17.4 有问题的研究实践
- 17.5 进行重复性研究
- 17.6 进行重复性数据分析
- 17.7 结论:提高科学水平
- 17.8 阅读建议
- References