# References
Baker, Monya. 2017\. “Reproducibility: Check Your Chemistry.” _Nature_ 548 (7668): 485–88\. doi:[10.1038/548485a](https://doi.org/10.1038/548485a).
Bem, Daryl J. 2011\. “Feeling the Future: Experimental Evidence for Anomalous Retroactive Influences on Cognition and Affect.” _J Pers Soc Psychol_ 100 (3): 407–25\. doi:[10.1037/a0021524](https://doi.org/10.1037/a0021524).
Breiman, Leo. 2001\. “Statistical Modeling: The Two Cultures (with Comments and a Rejoinder by the Author).” _Statist. Sci._ 16 (3). The Institute of Mathematical Statistics: 199–231\. doi:[10.1214/ss/1009213726](https://doi.org/10.1214/ss/1009213726).
Camerer, Colin F., Anna Dreber, Felix Holzmeister, Teck-Hua Ho, Jürgen Huber, Magnus Johannesson, Michael Kirchler, et al. 2018\. “Evaluating the Replicability of Social Science Experiments in Nature and Science Between 2010 and 2015.” _Nature Human Behaviour_ 2: 637–44.
Christensen, Garret S, and Edward Miguel. 2016\. “Transparency, Reproducibility, and the Credibility of Economics Research.” Working Paper 22989\. Working Paper Series. National Bureau of Economic Research. doi:[10.3386/w22989](https://doi.org/10.3386/w22989).
Copas, J. B. 1983\. “Regression, Prediction and Shrinkage (with Discussion).” _Journal of the Royal Statistical Society, Series B: Methodological_ 45: 311–54.
Darley, John M, Mark P Zanna, and Henry L Roediger. 2004\. _The Compleat Academic: A Career Guide_. 2nd ed. Washington, DC: American Psychological Association. [http://www.loc.gov/catdir/toc/fy037/2003041830.html](http://www.loc.gov/catdir/toc/fy037/2003041830.html).
Dehghan, Mahshid, Andrew Mente, Xiaohe Zhang, Sumathi Swaminathan, Wei Li, Viswanathan Mohan, Romaina Iqbal, et al. 2017\. “Associations of Fats and Carbohydrate Intake with Cardiovascular Disease and Mortality in 18 Countries from Five Continents (Pure): A Prospective Cohort Study.” _Lancet_ 390 (10107): 2050–62\. doi:[10.1016/S0140-6736(17)32252-3](https://doi.org/10.1016/S0140-6736(17)32252-3).
Efron, Bradley. 1998\. “R. a. Fisher in the 21st Century (Invited Paper Presented at the 1996 R. a. Fisher Lecture).” _Statist. Sci._ 13 (2). The Institute of Mathematical Statistics: 95–122\. doi:[10.1214/ss/1028905930](https://doi.org/10.1214/ss/1028905930).
Errington, Timothy M, Elizabeth Iorns, William Gunn, Fraser Elisabeth Tan, Joelle Lomax, and Brian A Nosek. 2014\. “An Open Investigation of the Reproducibility of Cancer Biology Research.” _Elife_ 3 (December). doi:[10.7554/eLife.04333](https://doi.org/10.7554/eLife.04333).
Fisher, R.A. 1925\. _Statistical Methods for Research Workers_. Edinburgh Oliver & Boyd.
Galak, Jeff, Robyn A LeBoeuf, Leif D Nelson, and Joseph P Simmons. 2012\. “Correcting the Past: Failures to Replicate Psi.” _J Pers Soc Psychol_ 103 (6): 933–48\. doi:[10.1037/a0029709](https://doi.org/10.1037/a0029709).
Gardner, Christopher D, Alexandre Kiazand, Sofiya Alhassan, Soowon Kim, Randall S Stafford, Raymond R Balise, Helena C Kraemer, and Abby C King. 2007\. “Comparison of the Atkins, Zone, Ornish, and Learn Diets for Change in Weight and Related Risk Factors Among Overweight Premenopausal Women: The a to Z Weight Loss Study: A Randomized Trial.” _JAMA_ 297 (9): 969–77\. doi:[10.1001/jama.297.9.969](https://doi.org/10.1001/jama.297.9.969).
Ioannidis, John P A. 2005\. “Why Most Published Research Findings Are False.” _PLoS Med_ 2 (8): e124\. doi:[10.1371/journal.pmed.0020124](https://doi.org/10.1371/journal.pmed.0020124).
Kaplan, Robert M, and Veronica L Irvin. 2015\. “Likelihood of Null Effects of Large Nhlbi Clinical Trials Has Increased over Time.” _PLoS One_ 10 (8): e0132382\. doi:[10.1371/journal.pone.0132382](https://doi.org/10.1371/journal.pone.0132382).
Kass, Robert E., and Adrian E. Raftery. 1995\. “Bayes Factors.” _Journal of the American Statistical Association_ 90 (430). Taylor & Francis: 773–95\. doi:[10.1080/01621459.1995.10476572](https://doi.org/10.1080/01621459.1995.10476572).
Kerr, N L. 1998\. “HARKing: Hypothesizing After the Results Are Known.” _Pers Soc Psychol Rev_ 2 (3): 196–217\. doi:[10.1207/s15327957pspr0203_4](https://doi.org/10.1207/s15327957pspr0203_4).
Neyman, J. 1937\. “Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability.” _Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences_ 236 (767). The Royal Society: 333–80\. doi:[10.1098/rsta.1937.0005](https://doi.org/10.1098/rsta.1937.0005).
Neyman, J., and K. Pearson. 1933\. “On the Problem of the Most Efficient Tests of Statistical Hypotheses.” _Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences_ 231 (694-706). The Royal Society: 289–337\. doi:[10.1098/rsta.1933.0009](https://doi.org/10.1098/rsta.1933.0009).
Open Science Collaboration. 2015\. “PSYCHOLOGY. Estimating the Reproducibility of Psychological Science.” _Science_ 349 (6251): aac4716\. doi:[10.1126/science.aac4716](https://doi.org/10.1126/science.aac4716).
Pesch, Beate, Benjamin Kendzia, Per Gustavsson, Karl-Heinz Jöckel, Georg Johnen, Hermann Pohlabeln, Ann Olsson, et al. 2012\. “Cigarette Smoking and Lung Cancer–relative Risk Estimates for the Major Histological Types from a Pooled Analysis of Case-Control Studies.” _Int J Cancer_ 131 (5): 1210–9\. doi:[10.1002/ijc.27339](https://doi.org/10.1002/ijc.27339).
Schenker, Nathaniel, and Jane F. Gentleman. 2001\. “On Judging the Significance of Differences by Examining the Overlap Between Confidence Intervals.” _The American Statistician_ 55 (3). [American Statistical Association, Taylor & Francis, Ltd.]: 182–86\. [http://www.jstor.org/stable/2685796](http://www.jstor.org/stable/2685796).
Simmons, Joseph P, Leif D Nelson, and Uri Simonsohn. 2011\. “False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant.” _Psychol Sci_ 22 (11): 1359–66\. doi:[10.1177/0956797611417632](https://doi.org/10.1177/0956797611417632).
Smaldino, Paul E, and Richard McElreath. 2016\. “The Natural Selection of Bad Science.” _R Soc Open Sci_ 3 (9): 160384\. doi:[10.1098/rsos.160384](https://doi.org/10.1098/rsos.160384).
Stigler, Stephen M. 2016\. _The Seven Pillars of Statistical Wisdom_. Harvard University Press.
Teicholz, Nina. 2014\. _The Big Fat Surprise_. Simon & Schuster.
Wakefield, A J. 1999\. “MMR Vaccination and Autism.” _Lancet_ 354 (9182): 949–50\. doi:[10.1016/S0140-6736(05)75696-8](https://doi.org/10.1016/S0140-6736(05)75696-8).
Wansink, Brian, David R Just, and Collin R Payne. 2012\. “Can Branding Improve School Lunches?” _Arch Pediatr Adolesc Med_ 166 (10): 1–2\. doi:[10.1001/archpediatrics.2012.999](https://doi.org/10.1001/archpediatrics.2012.999).
- 前言
- 0.1 本书为什么存在?
- 0.2 你不是统计学家-我们为什么要听你的?
- 0.3 为什么是 R?
- 0.4 数据的黄金时代
- 0.5 开源书籍
- 0.6 确认
- 1 引言
- 1.1 什么是统计思维?
- 1.2 统计数据能为我们做什么?
- 1.3 统计学的基本概念
- 1.4 因果关系与统计
- 1.5 阅读建议
- 2 处理数据
- 2.1 什么是数据?
- 2.2 测量尺度
- 2.3 什么是良好的测量?
- 2.4 阅读建议
- 3 概率
- 3.1 什么是概率?
- 3.2 我们如何确定概率?
- 3.3 概率分布
- 3.4 条件概率
- 3.5 根据数据计算条件概率
- 3.6 独立性
- 3.7 逆转条件概率:贝叶斯规则
- 3.8 数据学习
- 3.9 优势比
- 3.10 概率是什么意思?
- 3.11 阅读建议
- 4 汇总数据
- 4.1 为什么要总结数据?
- 4.2 使用表格汇总数据
- 4.3 分布的理想化表示
- 4.4 阅读建议
- 5 将模型拟合到数据
- 5.1 什么是模型?
- 5.2 统计建模:示例
- 5.3 什么使模型“良好”?
- 5.4 模型是否太好?
- 5.5 最简单的模型:平均值
- 5.6 模式
- 5.7 变异性:平均值与数据的拟合程度如何?
- 5.8 使用模拟了解统计数据
- 5.9 Z 分数
- 6 数据可视化
- 6.1 数据可视化如何拯救生命
- 6.2 绘图解剖
- 6.3 使用 ggplot 在 R 中绘制
- 6.4 良好可视化原则
- 6.5 最大化数据/墨水比
- 6.6 避免图表垃圾
- 6.7 避免数据失真
- 6.8 谎言因素
- 6.9 记住人的局限性
- 6.10 其他因素的修正
- 6.11 建议阅读和视频
- 7 取样
- 7.1 我们如何取样?
- 7.2 采样误差
- 7.3 平均值的标准误差
- 7.4 中心极限定理
- 7.5 置信区间
- 7.6 阅读建议
- 8 重新采样和模拟
- 8.1 蒙特卡罗模拟
- 8.2 统计的随机性
- 8.3 生成随机数
- 8.4 使用蒙特卡罗模拟
- 8.5 使用模拟统计:引导程序
- 8.6 阅读建议
- 9 假设检验
- 9.1 无效假设统计检验(NHST)
- 9.2 无效假设统计检验:一个例子
- 9.3 无效假设检验过程
- 9.4 现代环境下的 NHST:多重测试
- 9.5 阅读建议
- 10 置信区间、效应大小和统计功率
- 10.1 置信区间
- 10.2 效果大小
- 10.3 统计能力
- 10.4 阅读建议
- 11 贝叶斯统计
- 11.1 生成模型
- 11.2 贝叶斯定理与逆推理
- 11.3 进行贝叶斯估计
- 11.4 估计后验分布
- 11.5 选择优先权
- 11.6 贝叶斯假设检验
- 11.7 阅读建议
- 12 分类关系建模
- 12.1 示例:糖果颜色
- 12.2 皮尔逊卡方检验
- 12.3 应急表及双向试验
- 12.4 标准化残差
- 12.5 优势比
- 12.6 贝叶斯系数
- 12.7 超出 2 x 2 表的分类分析
- 12.8 注意辛普森悖论
- 13 建模持续关系
- 13.1 一个例子:仇恨犯罪和收入不平等
- 13.2 收入不平等是否与仇恨犯罪有关?
- 13.3 协方差和相关性
- 13.4 相关性和因果关系
- 13.5 阅读建议
- 14 一般线性模型
- 14.1 线性回归
- 14.2 安装更复杂的模型
- 14.3 变量之间的相互作用
- 14.4“预测”的真正含义是什么?
- 14.5 阅读建议
- 15 比较方法
- 15.1 学生 T 考试
- 15.2 t 检验作为线性模型
- 15.3 平均差的贝叶斯因子
- 15.4 配对 t 检验
- 15.5 比较两种以上的方法
- 16 统计建模过程:一个实例
- 16.1 统计建模过程
- 17 做重复性研究
- 17.1 我们认为科学应该如何运作
- 17.2 科学(有时)是如何工作的
- 17.3 科学中的再现性危机
- 17.4 有问题的研究实践
- 17.5 进行重复性研究
- 17.6 进行重复性数据分析
- 17.7 结论:提高科学水平
- 17.8 阅读建议
- References