# 用于 MNIST 分类的基于 TensorFlow 的 MLP
首先,加载 MNIST 数据集,并使用以下代码定义训练和测试特征以及目标:
```py
from tensorflow.examples.tutorials.mnist import input_data
mnist_home = os.path.join(datasetslib.datasets_root, 'mnist')
mnist = input_data.read_data_sets(mnist_home, one_hot=True)
X_train = mnist.train.images
X_test = mnist.test.images
Y_train = mnist.train.labels
Y_test = mnist.test.labels
num_outputs = 10 # 0-9 digits
num_inputs = 784 # total pixels
```
我们创建了三个辅助函数,它们将帮助我们创建一个只有一个隐藏层的简单 MLP,然后是一个更大的 MLP,每层有多个层和多个神经元。
`mlp()`函数使用以下逻辑构建网络层:
1. `mlp()`函数需要五个输入:
* `x`是输入特征张量
* `num_inputs`是输入特征的数量
* `num_outputs`是输出目标的数量
* `num_layers`是所需隐藏层数
* `num_neurons`是包含每层神经元数量的列表
2. 将权重和偏差列表设置为空:
```py
w=[]
b=[]
```
1. 为隐藏层的数量运行循环以创建权重和偏移张量并将它们附加到各自的列表:
* 张量分别名为`w_<layer_num>`和`b_<layer_num>`。命名张量有助于调试和查找代码问题。
* 使用`tf.random_normal()`以正态分布初始化张量。
* 权重张量的第一个维度是来自前一层的输入数量。对于第一个隐藏层,第一个维度是`num_inputs`。权重张量的第二维是当前层中的神经元的数量。
* 偏差都是一维张量,其中维度等于当前层中的神经元数量。
```py
for i in range(num_layers):
# weights
w.append(tf.Variable(tf.random_normal(
[num_inputs if i == 0 else num_neurons[i - 1],
num_neurons[i]]),
name="w_{0:04d}".format(i)
))
# biases
b.append(tf.Variable(tf.random_normal(
[num_neurons[i]]),
name="b_{0:04d}".format(i)
))
```
1. 为最后一个隐藏层创建权重和偏差。在这种情况下,权重张量的维度等于最后隐藏层中的神经元数量和输出目标的数量。偏差是一个张量,具有输出特征数量大小的单一维度:
```py
w.append(tf.Variable(tf.random_normal(
[num_neurons[num_layers - 1] if num_layers > 0 else num_inputs,
num_outputs]), name="w_out"))
b.append(tf.Variable(tf.random_normal([num_outputs]),
name="b_out"))
```
1. 现在开始定义层。首先,将`x`视为第一个最明显的输入层:
```py
# x is input layer
layer = x
```
1. 在循环中添加隐藏的层。每个隐藏层表示通过激活函数`tf.nn.relu()`使线性函数`tf.matmul(layer, w[i]) + b[i]`非线性化:
```py
# add hidden layers
for i in range(num_layers):
layer = tf.nn.relu(tf.matmul(layer, w[i]) + b[i])
```
1. 添加输出层。输出层和隐藏层之间的一个区别是输出层中没有激活函数:
```py
layer = tf.matmul(layer, w[num_layers]) + b[num_layers]
```
1. 返回包含 MLP 网络的`layer`对象:
```py
return layer
```
整个 MLP 函数的完整代码如下:
```py
def mlp(x, num_inputs, num_outputs, num_layers, num_neurons):
w = []
b = []
for i in range(num_layers):
# weights
w.append(tf.Variable(tf.random_normal(
[num_inputs if i == 0 else num_neurons[i - 1],
num_neurons[i]]),
name="w_{0:04d}".format(i)
))
# biases
b.append(tf.Variable(tf.random_normal(
[num_neurons[i]]),
name="b_{0:04d}".format(i)
))
w.append(tf.Variable(tf.random_normal(
[num_neurons[num_layers - 1] if num_layers > 0 else num_inputs,
num_outputs]), name="w_out"))
b.append(tf.Variable(tf.random_normal([num_outputs]), name="b_out"))
# x is input layer
layer = x
# add hidden layers
for i in range(num_layers):
layer = tf.nn.relu(tf.matmul(layer, w[i]) + b[i])
# add output layer
layer = tf.matmul(layer, w[num_layers]) + b[num_layers]
return layer
```
辅助函数`mnist_batch_func()`为 MNIST 数据集包装 TensorFlow 的批量函数,以提供下一批图像:
```py
def mnist_batch_func(batch_size=100):
X_batch, Y_batch = mnist.train.next_batch(batch_size)
return [X_batch, Y_batch]
```
此函数不言自明。 TensorFlow 为 MNIST 数据集提供此函数;但是,对于其他数据集,我们可能必须编写自己的批量函数。
辅助函数`tensorflow_classification()`训练并评估模型。
1. `tensorflow_classification()` 函数有几个输入:
* * `n_epochs`是要运行的训练循环的数量
* `n_batches`是应该运行每个循环中的训练的随机抽样批次的数量
* `batch_size`是每批中的样品数
* `batch_func`是`batch_size`并返回`X`和`Y`样本批次的函数
* `model`是具有神经元的实际神经网络或层
* `optimizer`是使用 TensorFlow 定义的优化函数
* `loss`是优化器优化参数的成本函数损失
* `accuracy_function`是计算准确率分数的函数
* `X_test`和`Y_test`是测试的数据集
1. 启动 TensorFlow 会话以运行训练循环:
```py
with tf.Session() as tfs:
tf.global_variables_initializer().run()
```
1. 运行`n_epoch`循环的训练:
```py
for epoch in range(n_epochs):
```
1. 在每个循环中,取样本集的`n_batches`数量并训练模型,计算每批的损失,计算每个周期的平均损失:
```py
epoch_loss = 0.0
for batch in range(n_batches):
X_batch, Y_batch = batch_func(batch_size)
feed_dict = {x: X_batch, y: Y_batch}
_, batch_loss = tfs.run([optimizer, loss], feed_dict)
epoch_loss += batch_loss
average_loss = epoch_loss / n_batches
print("epoch: {0:04d} loss = {1:0.6f}".format(
epoch, average_loss))
```
1. 完成所有周期循环后,计算并打印用`accuracy_function`计算的精度分数:
```py
feed_dict = {x: X_test, y: Y_test}
accuracy_score = tfs.run(accuracy_function,
feed_dict=feed_dict)
print("accuracy={0:.8f}".format(accuracy_score))
```
`tensorflow_classification()`函数的完整代码如下:
```py
def tensorflow_classification(n_epochs, n_batches,
batch_size, batch_func,
model, optimizer, loss, accuracy_function,
X_test, Y_test):
with tf.Session() as tfs:
tfs.run(tf.global_variables_initializer())
for epoch in range(n_epochs):
epoch_loss = 0.0
for batch in range(n_batches):
X_batch, Y_batch = batch_func(batch_size)
feed_dict = {x: X_batch, y: Y_batch}
_, batch_loss = tfs.run([optimizer, loss], feed_dict)
epoch_loss += batch_loss
average_loss = epoch_loss / n_batches
print("epoch: {0:04d} loss = {1:0.6f}".format(
epoch, average_loss))
feed_dict = {x: X_test, y: Y_test}
accuracy_score = tfs.run(accuracy_function, feed_dict=feed_dict)
print("accuracy={0:.8f}".format(accuracy_score))
```
现在让我们定义输入和输出占位符,`x`和`y`以及其他超参数:
```py
# input images
x = tf.placeholder(dtype=tf.float32, name="x",
shape=[None, num_inputs])
# target output
y = tf.placeholder(dtype=tf.float32, name="y",
shape=[None, num_outputs])
num_layers = 0
num_neurons = []
learning_rate = 0.01
n_epochs = 50
batch_size = 100
n_batches = int(mnist.train.num_examples/batch_size)
```
参数如下所述:
* `num_layers`是隐藏层数。我们首先练习没有隐藏层,只有输入和输出层。
* `num_neurons`是空列表,因为没有隐藏层。
* `learning_rate`是 0.01,随机选择的小数。
* `num_epochs`代表 50 次迭代,以学习将输入连接到输出的唯一神经元的参数。
* `batch_size`保持在 100,这也是一个选择问题。较大的批量大小不一定提供更高的好处。您可能需要探索不同的批量大小,以找到神经网络的最佳批量大小。
* `n_batches`:批次数大致计算为示例数除以批次中的样本数。
现在让我们将所有内容放在一起,使用到目前为止定义的变量定义网络,`loss`函数,`optimizer`函数和`accuracy`函数。
```py
model = mlp(x=x,
num_inputs=num_inputs,
num_outputs=num_outputs,
num_layers=num_layers,
num_neurons=num_neurons)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=y))
optimizer = tf.train.GradientDescentOptimizer(
learning_rate=learning_rate).minimize(loss)
predictions_check = tf.equal(tf.argmax(model, 1), tf.argmax(y, 1))
accuracy_function = tf.reduce_mean(tf.cast(predictions_check, tf.float32))
```
在这段代码中,我们使用一个新的 tensorflow 函数来定义损失函数:
```py
tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=y)
```
当使用`softmax_cross_entropy_with_logits()`函数时,请确保输出未缩放且尚未通过`softmax`激活函数。 此函数在内部使用`softmax`来缩放输出。
该函数计算模型之间的 softmax 熵(估计值`y`)和`y`的实际值。当输出属于一个类而不是一个类时,使用熵函数。在我们的示例中,图像只能属于其中一个数字。
有关此熵函数的更多信息,请参阅 [https://www.tensorflow.org/api_docs/python/tf/nn/softmax_cross_entropy_with_logits](https://www.tensorflow.org/api_docs/python/tf/nn/softmax_cross_entropy_with_logits).
一旦定义了所有内容,运行 `tensorflow_classification` 函数来训练和评估模型:
```py
tensorflow_classification(n_epochs=n_epochs,
n_batches=n_batches,
batch_size=batch_size,
batch_func=mnist_batch_func,
model = model,
optimizer = optimizer,
loss = loss,
accuracy_function = accuracy_function,
X_test = mnist.test.images,
Y_test = mnist.test.labels
)
```
我们从运行分类得到以下输出:
```py
epoch: 0000 loss = 8.364567
epoch: 0001 loss = 4.347608
epoch: 0002 loss = 3.085622
epoch: 0003 loss = 2.468341
epoch: 0004 loss = 2.099220
epoch: 0005 loss = 1.853206
--- Epoch 06 to 45 output removed for brevity ---
epoch: 0046 loss = 0.684285
epoch: 0047 loss = 0.678972
epoch: 0048 loss = 0.673685
epoch: 0049 loss = 0.668717
accuracy=0.85720009
```
我们看到单个神经元网络在 50 次迭代中缓慢地将损失从 8.3 降低到 0.66,最终得到几乎 85%的准确率。对于这个具体的例子,这是非常糟糕的准确性,因为这只是使用 TensorFlow 进行分类使用 MLP 的演示。
我们使用更多层和神经元运行相同的代码,并获得以下准确性:
| 层数 | 每个隐藏层中的神经元数量 | 准确性 |
| --- | --- | --- |
| 0 | 0 | 0.857 |
| 1 | 8 | 0.616 |
| 2 | 256 | 0.936 |
因此,通过在每层添加两行和 256 个神经元,我们将精度提高到 0.936。我们鼓励您尝试使用不同变量值的代码来观察它如何影响损失和准确性。
- TensorFlow 101
- 什么是 TensorFlow?
- TensorFlow 核心
- 代码预热 - Hello TensorFlow
- 张量
- 常量
- 操作
- 占位符
- 从 Python 对象创建张量
- 变量
- 从库函数生成的张量
- 使用相同的值填充张量元素
- 用序列填充张量元素
- 使用随机分布填充张量元素
- 使用tf.get_variable()获取变量
- 数据流图或计算图
- 执行顺序和延迟加载
- 跨计算设备执行图 - CPU 和 GPU
- 将图节点放置在特定的计算设备上
- 简单放置
- 动态展示位置
- 软放置
- GPU 内存处理
- 多个图
- TensorBoard
- TensorBoard 最小的例子
- TensorBoard 详情
- 总结
- TensorFlow 的高级库
- TF Estimator - 以前的 TF 学习
- TF Slim
- TFLearn
- 创建 TFLearn 层
- TFLearn 核心层
- TFLearn 卷积层
- TFLearn 循环层
- TFLearn 正则化层
- TFLearn 嵌入层
- TFLearn 合并层
- TFLearn 估计层
- 创建 TFLearn 模型
- TFLearn 模型的类型
- 训练 TFLearn 模型
- 使用 TFLearn 模型
- PrettyTensor
- Sonnet
- 总结
- Keras 101
- 安装 Keras
- Keras 中的神经网络模型
- 在 Keras 建立模型的工作流程
- 创建 Keras 模型
- 用于创建 Keras 模型的顺序 API
- 用于创建 Keras 模型的函数式 API
- Keras 层
- Keras 核心层
- Keras 卷积层
- Keras 池化层
- Keras 本地连接层
- Keras 循环层
- Keras 嵌入层
- Keras 合并层
- Keras 高级激活层
- Keras 正则化层
- Keras 噪音层
- 将层添加到 Keras 模型
- 用于将层添加到 Keras 模型的顺序 API
- 用于向 Keras 模型添加层的函数式 API
- 编译 Keras 模型
- 训练 Keras 模型
- 使用 Keras 模型进行预测
- Keras 的附加模块
- MNIST 数据集的 Keras 序列模型示例
- 总结
- 使用 TensorFlow 进行经典机器学习
- 简单的线性回归
- 数据准备
- 构建一个简单的回归模型
- 定义输入,参数和其他变量
- 定义模型
- 定义损失函数
- 定义优化器函数
- 训练模型
- 使用训练的模型进行预测
- 多元回归
- 正则化回归
- 套索正则化
- 岭正则化
- ElasticNet 正则化
- 使用逻辑回归进行分类
- 二分类的逻辑回归
- 多类分类的逻辑回归
- 二分类
- 多类分类
- 总结
- 使用 TensorFlow 和 Keras 的神经网络和 MLP
- 感知机
- 多层感知机
- 用于图像分类的 MLP
- 用于 MNIST 分类的基于 TensorFlow 的 MLP
- 用于 MNIST 分类的基于 Keras 的 MLP
- 用于 MNIST 分类的基于 TFLearn 的 MLP
- 使用 TensorFlow,Keras 和 TFLearn 的 MLP 总结
- 用于时间序列回归的 MLP
- 总结
- 使用 TensorFlow 和 Keras 的 RNN
- 简单循环神经网络
- RNN 变种
- LSTM 网络
- GRU 网络
- TensorFlow RNN
- TensorFlow RNN 单元类
- TensorFlow RNN 模型构建类
- TensorFlow RNN 单元包装器类
- 适用于 RNN 的 Keras
- RNN 的应用领域
- 用于 MNIST 数据的 Keras 中的 RNN
- 总结
- 使用 TensorFlow 和 Keras 的时间序列数据的 RNN
- 航空公司乘客数据集
- 加载 airpass 数据集
- 可视化 airpass 数据集
- 使用 TensorFlow RNN 模型预处理数据集
- TensorFlow 中的简单 RNN
- TensorFlow 中的 LSTM
- TensorFlow 中的 GRU
- 使用 Keras RNN 模型预处理数据集
- 使用 Keras 的简单 RNN
- 使用 Keras 的 LSTM
- 使用 Keras 的 GRU
- 总结
- 使用 TensorFlow 和 Keras 的文本数据的 RNN
- 词向量表示
- 为 word2vec 模型准备数据
- 加载和准备 PTB 数据集
- 加载和准备 text8 数据集
- 准备小验证集
- 使用 TensorFlow 的 skip-gram 模型
- 使用 t-SNE 可视化单词嵌入
- keras 的 skip-gram 模型
- 使用 TensorFlow 和 Keras 中的 RNN 模型生成文本
- TensorFlow 中的 LSTM 文本生成
- Keras 中的 LSTM 文本生成
- 总结
- 使用 TensorFlow 和 Keras 的 CNN
- 理解卷积
- 了解池化
- CNN 架构模式 - LeNet
- 用于 MNIST 数据的 LeNet
- 使用 TensorFlow 的用于 MNIST 的 LeNet CNN
- 使用 Keras 的用于 MNIST 的 LeNet CNN
- 用于 CIFAR10 数据的 LeNet
- 使用 TensorFlow 的用于 CIFAR10 的 ConvNets
- 使用 Keras 的用于 CIFAR10 的 ConvNets
- 总结
- 使用 TensorFlow 和 Keras 的自编码器
- 自编码器类型
- TensorFlow 中的栈式自编码器
- Keras 中的栈式自编码器
- TensorFlow 中的去噪自编码器
- Keras 中的去噪自编码器
- TensorFlow 中的变分自编码器
- Keras 中的变分自编码器
- 总结
- TF 服务:生产中的 TensorFlow 模型
- 在 TensorFlow 中保存和恢复模型
- 使用保护程序类保存和恢复所有图变量
- 使用保护程序类保存和恢复所选变量
- 保存和恢复 Keras 模型
- TensorFlow 服务
- 安装 TF 服务
- 保存 TF 服务的模型
- 提供 TF 服务模型
- 在 Docker 容器中提供 TF 服务
- 安装 Docker
- 为 TF 服务构建 Docker 镜像
- 在 Docker 容器中提供模型
- Kubernetes 中的 TensorFlow 服务
- 安装 Kubernetes
- 将 Docker 镜像上传到 dockerhub
- 在 Kubernetes 部署
- 总结
- 迁移学习和预训练模型
- ImageNet 数据集
- 再训练或微调模型
- COCO 动物数据集和预处理图像
- TensorFlow 中的 VGG16
- 使用 TensorFlow 中预训练的 VGG16 进行图像分类
- TensorFlow 中的图像预处理,用于预训练的 VGG16
- 使用 TensorFlow 中的再训练的 VGG16 进行图像分类
- Keras 的 VGG16
- 使用 Keras 中预训练的 VGG16 进行图像分类
- 使用 Keras 中再训练的 VGG16 进行图像分类
- TensorFlow 中的 Inception v3
- 使用 TensorFlow 中的 Inception v3 进行图像分类
- 使用 TensorFlow 中的再训练的 Inception v3 进行图像分类
- 总结
- 深度强化学习
- OpenAI Gym 101
- 将简单的策略应用于 cartpole 游戏
- 强化学习 101
- Q 函数(在模型不可用时学习优化)
- RL 算法的探索与开发
- V 函数(模型可用时学习优化)
- 强化学习技巧
- 强化学习的朴素神经网络策略
- 实现 Q-Learning
- Q-Learning 的初始化和离散化
- 使用 Q-Table 进行 Q-Learning
- Q-Network 或深 Q 网络(DQN)的 Q-Learning
- 总结
- 生成性对抗网络
- 生成性对抗网络 101
- 建立和训练 GAN 的最佳实践
- 使用 TensorFlow 的简单的 GAN
- 使用 Keras 的简单的 GAN
- 使用 TensorFlow 和 Keras 的深度卷积 GAN
- 总结
- 使用 TensorFlow 集群的分布式模型
- 分布式执行策略
- TensorFlow 集群
- 定义集群规范
- 创建服务器实例
- 定义服务器和设备之间的参数和操作
- 定义并训练图以进行异步更新
- 定义并训练图以进行同步更新
- 总结
- 移动和嵌入式平台上的 TensorFlow 模型
- 移动平台上的 TensorFlow
- Android 应用中的 TF Mobile
- Android 上的 TF Mobile 演示
- iOS 应用中的 TF Mobile
- iOS 上的 TF Mobile 演示
- TensorFlow Lite
- Android 上的 TF Lite 演示
- iOS 上的 TF Lite 演示
- 总结
- R 中的 TensorFlow 和 Keras
- 在 R 中安装 TensorFlow 和 Keras 软件包
- R 中的 TF 核心 API
- R 中的 TF 估计器 API
- R 中的 Keras API
- R 中的 TensorBoard
- R 中的 tfruns 包
- 总结
- 调试 TensorFlow 模型
- 使用tf.Session.run()获取张量值
- 使用tf.Print()打印张量值
- 用tf.Assert()断言条件
- 使用 TensorFlow 调试器(tfdbg)进行调试
- 总结
- 张量处理单元