# 用于时间序列回归的 MLP
我们已经看到了图像数据分类的例子;现在让我们看一下时间序列数据的回归。我们将建立并使用 MLP 作为一个较小的单变量时间序列数据集,称为国际航空公司乘客数据集。该数据集包含多年来的乘客总数。该数据集可从以下链接获得:
* [https://www.kaggle.com/andreazzini/international-airline-passengers/data](https://www.kaggle.com/andreazzini/international-airline-passengers/data)
* [https://datamarket.com/data/set/22u3/international-airline-passengers-monthly-totals-in-thousands-jan-49-dec-60](https://datamarket.com/data/set/22u3/international-airline-passengers-monthly-totals-in-thousands-jan-49-dec-60)
让我们从准备数据集开始。
1. 首先,使用以下代码加载数据集:
```py
filename = os.path.join(datasetslib.datasets_root,
'ts-data',
'international-airline-passengers-cleaned.csv')
dataframe = pd.read_csv(filename,usecols=[1],header=0)
dataset = dataframe.values
dataset = dataset.astype('float32')
```
1. 利用`datasetslib`的效用函数,我们将数据集分成测试和训练集。对于时间序列数据集,我们有一个单独的函数,不会改变观察结果,因为对于时间序列回归,我们需要维持观察的顺序。我们使用 67%的数据进行训练,33%的数据用于测试。您可能希望尝试使用不同比例的示例。
```py
train,test=dsu.train_test_split(dataset,train_size=0.67)
```
1. 对于时间序列回归,我们转换数据集以构建监督数据集。在此示例中,我们使用两个时间步长的滞后。我们将`n_x`设置为 2,`mvts_to_xy()`函数返回输入和输出(`X`和`Y`)训练和测试集,使得 X 在两列和 Y 中具有时间{t-1,t}的值在一列中具有时间{t + 1}的值。我们的学习算法假设通过找到时间{t-1,t,t + 1}的值之间的关系,可以学习时间 t + 1 的值。
```py
# reshape into X=t-1,t and Y=t+1
n_x=2
n_y=1
X_train, Y_train, X_test, Y_test = tsd.mvts_to_xy(train,
test,n_x=n_x,n_y=n_y)
```
有关将时间序列数据集转换为监督学习问题的更多信息,请访问以下链接:[http://machinelearningmastery.com/convert-time-series-supervised-learning-problem-python/](http://machinelearningmastery.com/convert-time-series-supervised-learning-problem-python/).
现在我们在我们的训练数据集上构建和训练模型:
1. 我导入所需的 Keras 模块:
```py
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
```
1. 设置构建模型所需的超参数:
```py
num_layers = 2
num_neurons = [8,8]
n_epochs = 50
batch_size = 2
```
请注意,我们使用批量大小为 2,因为数据集非常小。我们使用两层 MLP,每层只有八个神经元,因为我们的示例问题的规模很小。
1. 构建,编译和训练模型:
```py
model = Sequential()
model.add(Dense(num_neurons[0], activation='relu',
input_shape=(n_x,)))
model.add(Dense(num_neurons[1], activation='relu'))
model.add(Dense(units=1))
model.summary()
model.compile(loss='mse', optimizer='adam')
model.fit(X_train, Y_train,
batch_size=batch_size,
epochs=n_epochs)
```
请注意,我们使用 Adam 优化器而不是 SGD。 您可能想要尝试 TensorFlow 和 Keras 中可用的不同优化器。
1. 评估模型并打印均方误差(MSE)和均方根误差(RMSE):
```py
score = model.evaluate(X_test, Y_test)
print('\nTest mse:', score)
print('Test rmse:', math.sqrt(score))
```
我们得到以下输出:
```py
Test mse: 5619.24934188
Test rmse: 74.96165247566114
```
1. 使用我们的模型预测值并绘制它们,用于测试和训练数据集:
```py
# make predictions
Y_train_pred = model.predict(X_train)
Y_test_pred = model.predict(X_test)
# shift train predictions for plotting
Y_train_pred_plot = np.empty_like(dataset)
Y_train_pred_plot[:, :] = np.nan
Y_train_pred_plot[n_x-1:len(Y_train_pred)+n_x-1, :] = Y_train_pred
# shift test predictions for plotting
Y_test_pred_plot = np.empty_like(dataset)
Y_test_pred_plot[:, :] = np.nan
Y_test_pred_plot[len(Y_train_pred)+(n_x*2)-1:len(dataset)-1, :] = \
Y_test_pred
# plot baseline and predictions
plt.plot(dataset,label='Original Data')
plt.plot(Y_train_pred_plot,label='Y_train_pred')
plt.plot(Y_test_pred_plot,label='Y_test_pred')
plt.legend()
plt.show()
```
我们得到以下关于原始和预测时间序列值的图:
![](https://img.kancloud.cn/29/f8/29f89ff41dffc6764dacaaba37f1e613_880x578.png)
如你所见,这是一个非常好的估计。然而,在现实生活中,数据本质上是多变量和复杂的。因此,我们将在后面的章节中看到时间序列数据的循环神经网络架构。
- TensorFlow 101
- 什么是 TensorFlow?
- TensorFlow 核心
- 代码预热 - Hello TensorFlow
- 张量
- 常量
- 操作
- 占位符
- 从 Python 对象创建张量
- 变量
- 从库函数生成的张量
- 使用相同的值填充张量元素
- 用序列填充张量元素
- 使用随机分布填充张量元素
- 使用tf.get_variable()获取变量
- 数据流图或计算图
- 执行顺序和延迟加载
- 跨计算设备执行图 - CPU 和 GPU
- 将图节点放置在特定的计算设备上
- 简单放置
- 动态展示位置
- 软放置
- GPU 内存处理
- 多个图
- TensorBoard
- TensorBoard 最小的例子
- TensorBoard 详情
- 总结
- TensorFlow 的高级库
- TF Estimator - 以前的 TF 学习
- TF Slim
- TFLearn
- 创建 TFLearn 层
- TFLearn 核心层
- TFLearn 卷积层
- TFLearn 循环层
- TFLearn 正则化层
- TFLearn 嵌入层
- TFLearn 合并层
- TFLearn 估计层
- 创建 TFLearn 模型
- TFLearn 模型的类型
- 训练 TFLearn 模型
- 使用 TFLearn 模型
- PrettyTensor
- Sonnet
- 总结
- Keras 101
- 安装 Keras
- Keras 中的神经网络模型
- 在 Keras 建立模型的工作流程
- 创建 Keras 模型
- 用于创建 Keras 模型的顺序 API
- 用于创建 Keras 模型的函数式 API
- Keras 层
- Keras 核心层
- Keras 卷积层
- Keras 池化层
- Keras 本地连接层
- Keras 循环层
- Keras 嵌入层
- Keras 合并层
- Keras 高级激活层
- Keras 正则化层
- Keras 噪音层
- 将层添加到 Keras 模型
- 用于将层添加到 Keras 模型的顺序 API
- 用于向 Keras 模型添加层的函数式 API
- 编译 Keras 模型
- 训练 Keras 模型
- 使用 Keras 模型进行预测
- Keras 的附加模块
- MNIST 数据集的 Keras 序列模型示例
- 总结
- 使用 TensorFlow 进行经典机器学习
- 简单的线性回归
- 数据准备
- 构建一个简单的回归模型
- 定义输入,参数和其他变量
- 定义模型
- 定义损失函数
- 定义优化器函数
- 训练模型
- 使用训练的模型进行预测
- 多元回归
- 正则化回归
- 套索正则化
- 岭正则化
- ElasticNet 正则化
- 使用逻辑回归进行分类
- 二分类的逻辑回归
- 多类分类的逻辑回归
- 二分类
- 多类分类
- 总结
- 使用 TensorFlow 和 Keras 的神经网络和 MLP
- 感知机
- 多层感知机
- 用于图像分类的 MLP
- 用于 MNIST 分类的基于 TensorFlow 的 MLP
- 用于 MNIST 分类的基于 Keras 的 MLP
- 用于 MNIST 分类的基于 TFLearn 的 MLP
- 使用 TensorFlow,Keras 和 TFLearn 的 MLP 总结
- 用于时间序列回归的 MLP
- 总结
- 使用 TensorFlow 和 Keras 的 RNN
- 简单循环神经网络
- RNN 变种
- LSTM 网络
- GRU 网络
- TensorFlow RNN
- TensorFlow RNN 单元类
- TensorFlow RNN 模型构建类
- TensorFlow RNN 单元包装器类
- 适用于 RNN 的 Keras
- RNN 的应用领域
- 用于 MNIST 数据的 Keras 中的 RNN
- 总结
- 使用 TensorFlow 和 Keras 的时间序列数据的 RNN
- 航空公司乘客数据集
- 加载 airpass 数据集
- 可视化 airpass 数据集
- 使用 TensorFlow RNN 模型预处理数据集
- TensorFlow 中的简单 RNN
- TensorFlow 中的 LSTM
- TensorFlow 中的 GRU
- 使用 Keras RNN 模型预处理数据集
- 使用 Keras 的简单 RNN
- 使用 Keras 的 LSTM
- 使用 Keras 的 GRU
- 总结
- 使用 TensorFlow 和 Keras 的文本数据的 RNN
- 词向量表示
- 为 word2vec 模型准备数据
- 加载和准备 PTB 数据集
- 加载和准备 text8 数据集
- 准备小验证集
- 使用 TensorFlow 的 skip-gram 模型
- 使用 t-SNE 可视化单词嵌入
- keras 的 skip-gram 模型
- 使用 TensorFlow 和 Keras 中的 RNN 模型生成文本
- TensorFlow 中的 LSTM 文本生成
- Keras 中的 LSTM 文本生成
- 总结
- 使用 TensorFlow 和 Keras 的 CNN
- 理解卷积
- 了解池化
- CNN 架构模式 - LeNet
- 用于 MNIST 数据的 LeNet
- 使用 TensorFlow 的用于 MNIST 的 LeNet CNN
- 使用 Keras 的用于 MNIST 的 LeNet CNN
- 用于 CIFAR10 数据的 LeNet
- 使用 TensorFlow 的用于 CIFAR10 的 ConvNets
- 使用 Keras 的用于 CIFAR10 的 ConvNets
- 总结
- 使用 TensorFlow 和 Keras 的自编码器
- 自编码器类型
- TensorFlow 中的栈式自编码器
- Keras 中的栈式自编码器
- TensorFlow 中的去噪自编码器
- Keras 中的去噪自编码器
- TensorFlow 中的变分自编码器
- Keras 中的变分自编码器
- 总结
- TF 服务:生产中的 TensorFlow 模型
- 在 TensorFlow 中保存和恢复模型
- 使用保护程序类保存和恢复所有图变量
- 使用保护程序类保存和恢复所选变量
- 保存和恢复 Keras 模型
- TensorFlow 服务
- 安装 TF 服务
- 保存 TF 服务的模型
- 提供 TF 服务模型
- 在 Docker 容器中提供 TF 服务
- 安装 Docker
- 为 TF 服务构建 Docker 镜像
- 在 Docker 容器中提供模型
- Kubernetes 中的 TensorFlow 服务
- 安装 Kubernetes
- 将 Docker 镜像上传到 dockerhub
- 在 Kubernetes 部署
- 总结
- 迁移学习和预训练模型
- ImageNet 数据集
- 再训练或微调模型
- COCO 动物数据集和预处理图像
- TensorFlow 中的 VGG16
- 使用 TensorFlow 中预训练的 VGG16 进行图像分类
- TensorFlow 中的图像预处理,用于预训练的 VGG16
- 使用 TensorFlow 中的再训练的 VGG16 进行图像分类
- Keras 的 VGG16
- 使用 Keras 中预训练的 VGG16 进行图像分类
- 使用 Keras 中再训练的 VGG16 进行图像分类
- TensorFlow 中的 Inception v3
- 使用 TensorFlow 中的 Inception v3 进行图像分类
- 使用 TensorFlow 中的再训练的 Inception v3 进行图像分类
- 总结
- 深度强化学习
- OpenAI Gym 101
- 将简单的策略应用于 cartpole 游戏
- 强化学习 101
- Q 函数(在模型不可用时学习优化)
- RL 算法的探索与开发
- V 函数(模型可用时学习优化)
- 强化学习技巧
- 强化学习的朴素神经网络策略
- 实现 Q-Learning
- Q-Learning 的初始化和离散化
- 使用 Q-Table 进行 Q-Learning
- Q-Network 或深 Q 网络(DQN)的 Q-Learning
- 总结
- 生成性对抗网络
- 生成性对抗网络 101
- 建立和训练 GAN 的最佳实践
- 使用 TensorFlow 的简单的 GAN
- 使用 Keras 的简单的 GAN
- 使用 TensorFlow 和 Keras 的深度卷积 GAN
- 总结
- 使用 TensorFlow 集群的分布式模型
- 分布式执行策略
- TensorFlow 集群
- 定义集群规范
- 创建服务器实例
- 定义服务器和设备之间的参数和操作
- 定义并训练图以进行异步更新
- 定义并训练图以进行同步更新
- 总结
- 移动和嵌入式平台上的 TensorFlow 模型
- 移动平台上的 TensorFlow
- Android 应用中的 TF Mobile
- Android 上的 TF Mobile 演示
- iOS 应用中的 TF Mobile
- iOS 上的 TF Mobile 演示
- TensorFlow Lite
- Android 上的 TF Lite 演示
- iOS 上的 TF Lite 演示
- 总结
- R 中的 TensorFlow 和 Keras
- 在 R 中安装 TensorFlow 和 Keras 软件包
- R 中的 TF 核心 API
- R 中的 TF 估计器 API
- R 中的 Keras API
- R 中的 TensorBoard
- R 中的 tfruns 包
- 总结
- 调试 TensorFlow 模型
- 使用tf.Session.run()获取张量值
- 使用tf.Print()打印张量值
- 用tf.Assert()断言条件
- 使用 TensorFlow 调试器(tfdbg)进行调试
- 总结
- 张量处理单元