# ImageNet 数据集
根据 [http://image-net.org](http://image-net.org) :
ImageNet 是根据 WordNet 层次结构组织的图像数据集。WordNet 中的每个有意义的概念,可能由多个单词或单词短语描述,称为同义词集或 synset。
ImageNet 有大约 100 K 个同义词集,平均每个同义词集约有 1,000 个人工注释图像。 ImageNet 仅存储对图像的引用,而图像存储在互联网上的原始位置。在深度学习论文中,ImageNet-1K 是指作为 ImageNet 的**大规模视觉识别挑战**( **ILSVRC** )的一部分发布的数据集,用于将数据集分类为 1,000 个类别:
可以在以下 URL 找到 1,000 个挑战类别:
[http://image-net.org/challenges/LSVRC/2017/browse-synsets](http://image-net.org/challenges/LSVRC/2017/browse-synsets)
[http://image-net.org/challenges/LSVRC/2016/browse-synsets](http://image-net.org/challenges/LSVRC/2016/browse-synsets)
[http://image-net.org/challenges/LSVRC/2015/browse-synsets](http://image-net.org/challenges/LSVRC/2015/browse-synsets)
[http://image-net.org/challenges/LSVRC/2014/browse-synsets](http://image-net.org/challenges/LSVRC/2014/browse-synsets)
[http://image-net.org/challenges/LSVRC/2013/browse-synsets](http://image-net.org/challenges/LSVRC/2013/browse-synsets)
[http://image-net.org/challenges/LSVRC/2012/browse-synsets](http://image-net.org/challenges/LSVRC/2012/browse-synsets)
[http://image-net.org/challenges/LSVRC/2011/browse-synsets](http://image-net.org/challenges/LSVRC/2011/browse-synsets)
[http://image-net.org/challenges/LSVRC/2010/browse-synsets.](http://image-net.org/challenges/LSVRC/2010/browse-synsets)
我们编写了一个自定义函数来从 Google 下载 ImageNet 标签:
```py
def build_id2label(self):
base_url = 'https://raw.githubusercontent.com/tensorflow/models/master/research/inception/inception/data/'
synset_url = '{}/imagenet_lsvrc_2015_synsets.txt'.format(base_url)
synset_to_human_url = '{}/imagenet_metadata.txt'.format(base_url)
filename, _ = urllib.request.urlretrieve(synset_url)
synset_list = [s.strip() for s in open(filename).readlines()]
num_synsets_in_ilsvrc = len(synset_list)
assert num_synsets_in_ilsvrc == 1000
filename, _ = urllib.request.urlretrieve(synset_to_human_url)
synset_to_human_list = open(filename).readlines()
num_synsets_in_all_imagenet = len(synset_to_human_list)
assert num_synsets_in_all_imagenet == 21842
synset2name = {}
for s in synset_to_human_list:
parts = s.strip().split('\t')
assert len(parts) == 2
synset = parts[0]
name = parts[1]
synset2name[synset] = name
if self.n_classes == 1001:
id2label={0:'empty'}
id=1
else:
id2label = {}
id=0
for synset in synset_list:
label = synset2name[synset]
id2label[id] = label
id += 1
return id2label
```
我们将这些标签加载到我们的 Jupyter 笔记本中,如下所示:
```py
### Load ImageNet dataset for labels
from datasetslib.imagenet import imageNet
inet = imageNet()
inet.load_data(n_classes=1000)
#n_classes is 1001 for Inception models and 1000 for VGG models
```
在 ImageNet-1K 数据集上训练过的热门预训练图像分类模型如下表所示:
| **模型名称** | **Top-1 准确率** | **Top-5 准确率** | **Top-5 错误率** | **原始文件的链接** |
| --- | --- | --- | --- | --- |
| AlexNet | | | 15.3% | [https://www.cs.toronto.edu/~fritz/absps/imagenet.pdf](https://www.cs.toronto.edu/~fritz/absps/imagenet.pdf) |
| 盗梦空间也称为 Inception V1 | 69.8 | 89.6 | 6.67% | [https://arxiv.org/abs/1409.4842](https://arxiv.org/abs/1409.4842) |
| BN-启-V2 也称为 Inception V2 | 73.9 | 91.8 | 4.9% | [https://arxiv.org/abs/1502.03167](https://arxiv.org/abs/1502.03167) |
| Inception v3 | 78.0 | 93.9 | 3.46% | [https://arxiv.org/abs/1512.00567](https://arxiv.org/abs/1512.00567) |
| 成立 V4 | 80.2 | 95.2 | | [http://arxiv.org/abs/1602.07261](http://arxiv.org/abs/1602.07261) |
| Inception-Resnet-V2 | 80.4 | 95.2 | | [http://arxiv.org/abs/1602.07261](http://arxiv.org/abs/1602.07261) |
| VGG16 | 71.5 | 89.8 | 7.4% | [https://arxiv.org/abs/1409.1556](https://arxiv.org/abs/1409.1556) |
| VGG19 | 71.1 | 89.8 | 7.3% | [https://arxiv.org/abs/1409.1556](https://arxiv.org/abs/1409.1556) |
| ResNet V1 50 | 75.2 | 92.2 | 7.24% | [https://arxiv.org/abs/1512.03385](https://arxiv.org/abs/1512.03385) |
| Resnet V1 101 | 76.4 | 92.9 | | [https://arxiv.org/abs/1512.03385](https://arxiv.org/abs/1512.03385) |
| Resnet V1 152 | 76.8 | 93.2 | | [https://arxiv.org/abs/1512.03385](https://arxiv.org/abs/1512.03385) |
| ResNet V2 50 | 75.6 | 92.8 | | [https://arxiv.org/abs/1603.05027](https://arxiv.org/abs/1603.05027) |
| ResNet V2 101 | 77.0 | 93.7 | | [https://arxiv.org/abs/1603.05027](https://arxiv.org/abs/1603.05027) |
| ResNet V2 152 | 77.8 | 94.1 | | [https://arxiv.org/abs/1603.05027](https://arxiv.org/abs/1603.05027) |
| ResNet V2 200 | 79.9 | 95.2 | | [https://arxiv.org/abs/1603.05027](https://arxiv.org/abs/1603.05027) |
| Xception | 79.0 | 94.5 | | [https://arxiv.org/abs/1610.02357](https://arxiv.org/abs/1610.02357) |
| MobileNet V1 版本 | 41.3 至 70.7 | 66.2 至 89.5 | | [https://arxiv.org/pdf/1704.04861.pdf](https://arxiv.org/pdf/1704.04861.pdf) |
在上表中,Top-1 和 Top-5 指标指的是模型在 ImageNet 验证数据集上的表现。
Google Research 最近发布了一种名为 MobileNets 的新模型。 MobileNets 采用移动优先策略开发,牺牲了低资源使用的准确性。 MobileNets 旨在消耗低功耗并提供低延迟,以便在移动和嵌入式设备上提供更好的体验。谷歌为 MobileNet 模型提供了 16 个预训练好的检查点文件,每个模型提供不同数量的参数和**乘法累加**( **MAC** )。 MAC 和参数越高,资源使用和延迟就越高。因此,您可以在更高的准确性与更高的资源使用/延迟之间进行选择。
| **模型检查点** | **百万 MAC** | **百万参数** | **Top-1 准确率** | **Top-5 准确率** |
| --- | --- | --- | --- | --- |
| [MobileNet_v1_1.0_224](http://download.tensorflow.org/models/mobilenet_v1_1.0_224_2017_06_14.tar.gz) | 569 | 4.24 | 70.7 | 89.5 |
| [MobileNet_v1_1.0_192](http://download.tensorflow.org/models/mobilenet_v1_1.0_192_2017_06_14.tar.gz) | 418 | 4.24 | 69.3 | 88.9 |
| [MobileNet_v1_1.0_160](http://download.tensorflow.org/models/mobilenet_v1_1.0_160_2017_06_14.tar.gz) | 291 | 4.24 | 67.2 | 87.5 |
| [MobileNet_v1_1.0_128](http://download.tensorflow.org/models/mobilenet_v1_1.0_128_2017_06_14.tar.gz) | 186 | 4.24 | 64.1 | 85.3 |
| [MobileNet_v1_0.75_224](http://http//download.tensorflow.org/models/mobilenet_v1_0.75_224_2017_06_14.tar.gz) | 317 | 2.59 | 68.4 | 88.2 |
| [MobileNet_v1_0.75_192](http://download.tensorflow.org/models/mobilenet_v1_0.75_192_2017_06_14.tar.gz) | 233 | 2.59 | 67.4 | 87.3 |
| [MobileNet_v1_0.75_160](http://download.tensorflow.org/models/mobilenet_v1_0.75_160_2017_06_14.tar.gz) | 162 | 2.59 | 65.2 | 86.1 |
| [MobileNet_v1_0.75_128](http://download.tensorflow.org/models/mobilenet_v1_0.75_128_2017_06_14.tar.gz) | 104 | 2.59 | 61.8 | 83.6 |
| [MobileNet_v1_0.50_224](http://download.tensorflow.org/models/mobilenet_v1_0.50_224_2017_06_14.tar.gz) | 150 | 1.34 | 64.0 | 85.4 |
| [MobileNet_v1_0.50_192](http://download.tensorflow.org/models/mobilenet_v1_0.50_192_2017_06_14.tar.gz) | 110 | 1.34 | 62.1 | 84.0 |
| [MobileNet_v1_0.50_160](http://download.tensorflow.org/models/mobilenet_v1_0.50_160_2017_06_14.tar.gz) | 77 | 1.34 | 59.9 | 82.5 |
| [MobileNet_v1_0.50_128](http://download.tensorflow.org/models/mobilenet_v1_0.50_128_2017_06_14.tar.gz) | 49 | 1.34 | 56.2 | 79.6 |
| [MobileNet_v1_0.25_224](http://download.tensorflow.org/models/mobilenet_v1_0.25_224_2017_06_14.tar.gz) | 41 | 0.47 | 50.6 | 75.0 |
| [MobileNet_v1_0.25_192](http://download.tensorflow.org/models/mobilenet_v1_0.25_192_2017_06_14.tar.gz) | 34 | 0.47 | 49.0 | 73.6 |
| [MobileNet_v1_0.25_160](http://download.tensorflow.org/models/mobilenet_v1_0.25_160_2017_06_14.tar.gz) | 21 | 0.47 | 46.0 | 70.7 |
| [MobileNet_v1_0.25_128](http://download.tensorflow.org/models/mobilenet_v1_0.25_128_2017_06_14.tar.gz) | 14 | 0.47 | 41.3 | 66.2 |
有关 MobileNets 的更多信息,请访问以下资源:
[https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html](https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html)
[https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md)
[https://arxiv.org/pdf/1704.04861.pdf.](https://arxiv.org/pdf/1704.04861.pdf)
- TensorFlow 101
- 什么是 TensorFlow?
- TensorFlow 核心
- 代码预热 - Hello TensorFlow
- 张量
- 常量
- 操作
- 占位符
- 从 Python 对象创建张量
- 变量
- 从库函数生成的张量
- 使用相同的值填充张量元素
- 用序列填充张量元素
- 使用随机分布填充张量元素
- 使用tf.get_variable()获取变量
- 数据流图或计算图
- 执行顺序和延迟加载
- 跨计算设备执行图 - CPU 和 GPU
- 将图节点放置在特定的计算设备上
- 简单放置
- 动态展示位置
- 软放置
- GPU 内存处理
- 多个图
- TensorBoard
- TensorBoard 最小的例子
- TensorBoard 详情
- 总结
- TensorFlow 的高级库
- TF Estimator - 以前的 TF 学习
- TF Slim
- TFLearn
- 创建 TFLearn 层
- TFLearn 核心层
- TFLearn 卷积层
- TFLearn 循环层
- TFLearn 正则化层
- TFLearn 嵌入层
- TFLearn 合并层
- TFLearn 估计层
- 创建 TFLearn 模型
- TFLearn 模型的类型
- 训练 TFLearn 模型
- 使用 TFLearn 模型
- PrettyTensor
- Sonnet
- 总结
- Keras 101
- 安装 Keras
- Keras 中的神经网络模型
- 在 Keras 建立模型的工作流程
- 创建 Keras 模型
- 用于创建 Keras 模型的顺序 API
- 用于创建 Keras 模型的函数式 API
- Keras 层
- Keras 核心层
- Keras 卷积层
- Keras 池化层
- Keras 本地连接层
- Keras 循环层
- Keras 嵌入层
- Keras 合并层
- Keras 高级激活层
- Keras 正则化层
- Keras 噪音层
- 将层添加到 Keras 模型
- 用于将层添加到 Keras 模型的顺序 API
- 用于向 Keras 模型添加层的函数式 API
- 编译 Keras 模型
- 训练 Keras 模型
- 使用 Keras 模型进行预测
- Keras 的附加模块
- MNIST 数据集的 Keras 序列模型示例
- 总结
- 使用 TensorFlow 进行经典机器学习
- 简单的线性回归
- 数据准备
- 构建一个简单的回归模型
- 定义输入,参数和其他变量
- 定义模型
- 定义损失函数
- 定义优化器函数
- 训练模型
- 使用训练的模型进行预测
- 多元回归
- 正则化回归
- 套索正则化
- 岭正则化
- ElasticNet 正则化
- 使用逻辑回归进行分类
- 二分类的逻辑回归
- 多类分类的逻辑回归
- 二分类
- 多类分类
- 总结
- 使用 TensorFlow 和 Keras 的神经网络和 MLP
- 感知机
- 多层感知机
- 用于图像分类的 MLP
- 用于 MNIST 分类的基于 TensorFlow 的 MLP
- 用于 MNIST 分类的基于 Keras 的 MLP
- 用于 MNIST 分类的基于 TFLearn 的 MLP
- 使用 TensorFlow,Keras 和 TFLearn 的 MLP 总结
- 用于时间序列回归的 MLP
- 总结
- 使用 TensorFlow 和 Keras 的 RNN
- 简单循环神经网络
- RNN 变种
- LSTM 网络
- GRU 网络
- TensorFlow RNN
- TensorFlow RNN 单元类
- TensorFlow RNN 模型构建类
- TensorFlow RNN 单元包装器类
- 适用于 RNN 的 Keras
- RNN 的应用领域
- 用于 MNIST 数据的 Keras 中的 RNN
- 总结
- 使用 TensorFlow 和 Keras 的时间序列数据的 RNN
- 航空公司乘客数据集
- 加载 airpass 数据集
- 可视化 airpass 数据集
- 使用 TensorFlow RNN 模型预处理数据集
- TensorFlow 中的简单 RNN
- TensorFlow 中的 LSTM
- TensorFlow 中的 GRU
- 使用 Keras RNN 模型预处理数据集
- 使用 Keras 的简单 RNN
- 使用 Keras 的 LSTM
- 使用 Keras 的 GRU
- 总结
- 使用 TensorFlow 和 Keras 的文本数据的 RNN
- 词向量表示
- 为 word2vec 模型准备数据
- 加载和准备 PTB 数据集
- 加载和准备 text8 数据集
- 准备小验证集
- 使用 TensorFlow 的 skip-gram 模型
- 使用 t-SNE 可视化单词嵌入
- keras 的 skip-gram 模型
- 使用 TensorFlow 和 Keras 中的 RNN 模型生成文本
- TensorFlow 中的 LSTM 文本生成
- Keras 中的 LSTM 文本生成
- 总结
- 使用 TensorFlow 和 Keras 的 CNN
- 理解卷积
- 了解池化
- CNN 架构模式 - LeNet
- 用于 MNIST 数据的 LeNet
- 使用 TensorFlow 的用于 MNIST 的 LeNet CNN
- 使用 Keras 的用于 MNIST 的 LeNet CNN
- 用于 CIFAR10 数据的 LeNet
- 使用 TensorFlow 的用于 CIFAR10 的 ConvNets
- 使用 Keras 的用于 CIFAR10 的 ConvNets
- 总结
- 使用 TensorFlow 和 Keras 的自编码器
- 自编码器类型
- TensorFlow 中的栈式自编码器
- Keras 中的栈式自编码器
- TensorFlow 中的去噪自编码器
- Keras 中的去噪自编码器
- TensorFlow 中的变分自编码器
- Keras 中的变分自编码器
- 总结
- TF 服务:生产中的 TensorFlow 模型
- 在 TensorFlow 中保存和恢复模型
- 使用保护程序类保存和恢复所有图变量
- 使用保护程序类保存和恢复所选变量
- 保存和恢复 Keras 模型
- TensorFlow 服务
- 安装 TF 服务
- 保存 TF 服务的模型
- 提供 TF 服务模型
- 在 Docker 容器中提供 TF 服务
- 安装 Docker
- 为 TF 服务构建 Docker 镜像
- 在 Docker 容器中提供模型
- Kubernetes 中的 TensorFlow 服务
- 安装 Kubernetes
- 将 Docker 镜像上传到 dockerhub
- 在 Kubernetes 部署
- 总结
- 迁移学习和预训练模型
- ImageNet 数据集
- 再训练或微调模型
- COCO 动物数据集和预处理图像
- TensorFlow 中的 VGG16
- 使用 TensorFlow 中预训练的 VGG16 进行图像分类
- TensorFlow 中的图像预处理,用于预训练的 VGG16
- 使用 TensorFlow 中的再训练的 VGG16 进行图像分类
- Keras 的 VGG16
- 使用 Keras 中预训练的 VGG16 进行图像分类
- 使用 Keras 中再训练的 VGG16 进行图像分类
- TensorFlow 中的 Inception v3
- 使用 TensorFlow 中的 Inception v3 进行图像分类
- 使用 TensorFlow 中的再训练的 Inception v3 进行图像分类
- 总结
- 深度强化学习
- OpenAI Gym 101
- 将简单的策略应用于 cartpole 游戏
- 强化学习 101
- Q 函数(在模型不可用时学习优化)
- RL 算法的探索与开发
- V 函数(模型可用时学习优化)
- 强化学习技巧
- 强化学习的朴素神经网络策略
- 实现 Q-Learning
- Q-Learning 的初始化和离散化
- 使用 Q-Table 进行 Q-Learning
- Q-Network 或深 Q 网络(DQN)的 Q-Learning
- 总结
- 生成性对抗网络
- 生成性对抗网络 101
- 建立和训练 GAN 的最佳实践
- 使用 TensorFlow 的简单的 GAN
- 使用 Keras 的简单的 GAN
- 使用 TensorFlow 和 Keras 的深度卷积 GAN
- 总结
- 使用 TensorFlow 集群的分布式模型
- 分布式执行策略
- TensorFlow 集群
- 定义集群规范
- 创建服务器实例
- 定义服务器和设备之间的参数和操作
- 定义并训练图以进行异步更新
- 定义并训练图以进行同步更新
- 总结
- 移动和嵌入式平台上的 TensorFlow 模型
- 移动平台上的 TensorFlow
- Android 应用中的 TF Mobile
- Android 上的 TF Mobile 演示
- iOS 应用中的 TF Mobile
- iOS 上的 TF Mobile 演示
- TensorFlow Lite
- Android 上的 TF Lite 演示
- iOS 上的 TF Lite 演示
- 总结
- R 中的 TensorFlow 和 Keras
- 在 R 中安装 TensorFlow 和 Keras 软件包
- R 中的 TF 核心 API
- R 中的 TF 估计器 API
- R 中的 Keras API
- R 中的 TensorBoard
- R 中的 tfruns 包
- 总结
- 调试 TensorFlow 模型
- 使用tf.Session.run()获取张量值
- 使用tf.Print()打印张量值
- 用tf.Assert()断言条件
- 使用 TensorFlow 调试器(tfdbg)进行调试
- 总结
- 张量处理单元