# 使用 TensorFlow 的用于 MNIST 的 LeNet CNN
在 TensorFlow 中,应用以下步骤为 MNIST 数据构建基于 LeNet 的 CNN 模型:
1. 定义超参数,以及 x 和 y 的占位符(输入图像和输出标签) :
```py
n_classes = 10 # 0-9 digits
n_width = 28
n_height = 28
n_depth = 1
n_inputs = n_height * n_width * n_depth # total pixels
learning_rate = 0.001
n_epochs = 10
batch_size = 100
n_batches = int(mnist.train.num_examples/batch_size)
# input images shape: (n_samples,n_pixels)
x = tf.placeholder(dtype=tf.float32, name="x", shape=[None, n_inputs])
# output labels
y = tf.placeholder(dtype=tf.float32, name="y", shape=[None, n_classes])
```
将输入 x 重塑为形状(`n_samples`,`n_width`,`n_height`,`n_depth`):
```py
x_ = tf.reshape(x, shape=[-1, n_width, n_height, n_depth])
```
1. 使用形状为 4 x 4 的 32 个内核定义第一个卷积层,从而生成 32 个特征图。
* 首先,定义第一个卷积层的权重和偏差。我们使用正态分布填充参数:
```py
layer1_w = tf.Variable(tf.random_normal(shape=[4,4,n_depth,32],
stddev=0.1),name='l1_w')
layer1_b = tf.Variable(tf.random_normal([32]),name='l1_b')
```
* 接下来,用 `tf.nn.conv2d`函数定义卷积层。函数参数`stride`定义了内核张量在每个维度中应该滑动的元素。维度顺序由`data_format`确定,可以是`'NHWC'`或`'NCHW'`(默认为`'NHWC'`)。
通常,`stride`中的第一个和最后一个元素设置为“1”。函数参数`padding`可以是`SAME`或`VALID`。 `SAME` `padding`表示输入将用零填充,以便在卷积后输出与输入的形状相同。使用`tf.nn.relu()`函数添加`relu`激活:
```py
layer1_conv = tf.nn.relu(tf.nn.conv2d(x_,layer1_w,
strides=[1,1,1,1],
padding='SAME'
) +
layer1_b
)
```
* 使用 `tf.nn.max_pool()` 函数定义第一个池化层。参数 `ksize` 表示使用 2×2×1 个区域的合并操作,参数 `stride` 表示将区域滑动 2×2×1 个像素。因此,区域彼此不重叠。由于我们使用 `max_pool` ,池化操作选择 2 x 2 x 1 区域中的最大值:
```py
layer1_pool = tf.nn.max_pool(layer1_conv,ksize=[1,2,2,1],
strides=[1,2,2,1],padding='SAME')
```
第一个卷积层产生 32 个大小为 28 x 28 x 1 的特征图,然后池化成 32 x 14 x 14 x 1 的数据。
1. 定义第二个卷积层,它将此数据作为输入并生成 64 个特征图。
* 首先,定义第二个卷积层的权重和偏差。我们用正态分布填充参数:
```py
layer2_w = tf.Variable(tf.random_normal(shape=[4,4,32,64],
stddev=0.1),name='l2_w')
layer2_b = tf.Variable(tf.random_normal([64]),name='l2_b')
```
* 接下来,用 `tf.nn.conv2d`函数定义卷积层:
```py
layer2_conv = tf.nn.relu(tf.nn.conv2d(layer1_pool,
layer2_w,
strides=[1,1,1,1],
padding='SAME'
) +
layer2_b
)
```
* 用`tf.nn.max_pool`函数定义第二个池化层:
```py
layer2_pool = tf.nn.max_pool(layer2_conv,
ksize=[1,2,2,1],
strides=[1,2,2,1],
padding='SAME'
)
```
第二卷积层的输出形状为 64 ×14×14×1,然后池化成 64×7×7×1 的形状的输出。
1. 在输入 1024 个神经元的完全连接层之前重新整形此输出,以产生大小为 1024 的扁平输出:
```py
layer3_w = tf.Variable(tf.random_normal(shape=[64*7*7*1,1024],
stddev=0.1),name='l3_w')
layer3_b = tf.Variable(tf.random_normal([1024]),name='l3_b')
layer3_fc = tf.nn.relu(tf.matmul(tf.reshape(layer2_pool,
[-1, 64*7*7*1]),layer3_w) + layer3_b)
```
1. 完全连接层的输出馈入具有 10 个输出的线性输出层。我们在这一层没有使用 softmax,因为我们的损失函数自动将 softmax 应用于输出:
```py
layer4_w = tf.Variable(tf.random_normal(shape=[1024, n_classes],
stddev=0.1),name='l)
layer4_b = tf.Variable(tf.random_normal([n_classes]),name='l4_b')
layer4_out = tf.matmul(layer3_fc,layer4_w)+layer4_b
```
这创建了我们保存在变量`model`中的第一个 CNN 模型:
```py
model = layer4_out
```
鼓励读者探索具有不同超参数值的 TensorFlow 中可用的不同卷积和池操作符。
为了定义损失,我们使用`tf.nn.softmax_cross_entropy_with_logits`函数,对于优化器,我们使用`AdamOptimizer`函数。您应该尝试探索 TensorFlow 中可用的不同优化器函数。
```py
entropy = tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=y)
loss = tf.reduce_mean(entropy)
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
```
最后,我们通过迭代`n_epochs`来训练模型,并且在`n_batches`上的每个周期列中,每批`batch_size`的大小:
```py
with tf.Session() as tfs:
tf.global_variables_initializer().run()
for epoch in range(n_epochs):
total_loss = 0.0
for batch in range(n_batches):
batch_x,batch_y = mnist.train.next_batch(batch_size)
feed_dict={x:batch_x, y: batch_y}
batch_loss,_ = tfs.run([loss, optimizer],
feed_dict=feed_dict)
total_loss += batch_loss
average_loss = total_loss / n_batches
print("Epoch: {0:04d} loss = {1:0.6f}".format(epoch,average_loss))
print("Model Trained.")
predictions_check = tf.equal(tf.argmax(model,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(predictions_check, tf.float32))
feed_dict = {x:mnist.test.images, y:mnist.test.labels}
print("Accuracy:", accuracy.eval(feed_dict=feed_dict))
```
我们得到以下输出:
```py
Epoch: 0000 loss = 1.418295
Epoch: 0001 loss = 0.088259
Epoch: 0002 loss = 0.055410
Epoch: 0003 loss = 0.042798
Epoch: 0004 loss = 0.030471
Epoch: 0005 loss = 0.023837
Epoch: 0006 loss = 0.019800
Epoch: 0007 loss = 0.015900
Epoch: 0008 loss = 0.012918
Epoch: 0009 loss = 0.010322
Model Trained.
Accuracy: 0.9884
```
现在,与我们在前几章中看到的方法相比,这是一个非常好的准确性。从图像数据中学习 CNN 模型是不是很神奇?
- TensorFlow 101
- 什么是 TensorFlow?
- TensorFlow 核心
- 代码预热 - Hello TensorFlow
- 张量
- 常量
- 操作
- 占位符
- 从 Python 对象创建张量
- 变量
- 从库函数生成的张量
- 使用相同的值填充张量元素
- 用序列填充张量元素
- 使用随机分布填充张量元素
- 使用tf.get_variable()获取变量
- 数据流图或计算图
- 执行顺序和延迟加载
- 跨计算设备执行图 - CPU 和 GPU
- 将图节点放置在特定的计算设备上
- 简单放置
- 动态展示位置
- 软放置
- GPU 内存处理
- 多个图
- TensorBoard
- TensorBoard 最小的例子
- TensorBoard 详情
- 总结
- TensorFlow 的高级库
- TF Estimator - 以前的 TF 学习
- TF Slim
- TFLearn
- 创建 TFLearn 层
- TFLearn 核心层
- TFLearn 卷积层
- TFLearn 循环层
- TFLearn 正则化层
- TFLearn 嵌入层
- TFLearn 合并层
- TFLearn 估计层
- 创建 TFLearn 模型
- TFLearn 模型的类型
- 训练 TFLearn 模型
- 使用 TFLearn 模型
- PrettyTensor
- Sonnet
- 总结
- Keras 101
- 安装 Keras
- Keras 中的神经网络模型
- 在 Keras 建立模型的工作流程
- 创建 Keras 模型
- 用于创建 Keras 模型的顺序 API
- 用于创建 Keras 模型的函数式 API
- Keras 层
- Keras 核心层
- Keras 卷积层
- Keras 池化层
- Keras 本地连接层
- Keras 循环层
- Keras 嵌入层
- Keras 合并层
- Keras 高级激活层
- Keras 正则化层
- Keras 噪音层
- 将层添加到 Keras 模型
- 用于将层添加到 Keras 模型的顺序 API
- 用于向 Keras 模型添加层的函数式 API
- 编译 Keras 模型
- 训练 Keras 模型
- 使用 Keras 模型进行预测
- Keras 的附加模块
- MNIST 数据集的 Keras 序列模型示例
- 总结
- 使用 TensorFlow 进行经典机器学习
- 简单的线性回归
- 数据准备
- 构建一个简单的回归模型
- 定义输入,参数和其他变量
- 定义模型
- 定义损失函数
- 定义优化器函数
- 训练模型
- 使用训练的模型进行预测
- 多元回归
- 正则化回归
- 套索正则化
- 岭正则化
- ElasticNet 正则化
- 使用逻辑回归进行分类
- 二分类的逻辑回归
- 多类分类的逻辑回归
- 二分类
- 多类分类
- 总结
- 使用 TensorFlow 和 Keras 的神经网络和 MLP
- 感知机
- 多层感知机
- 用于图像分类的 MLP
- 用于 MNIST 分类的基于 TensorFlow 的 MLP
- 用于 MNIST 分类的基于 Keras 的 MLP
- 用于 MNIST 分类的基于 TFLearn 的 MLP
- 使用 TensorFlow,Keras 和 TFLearn 的 MLP 总结
- 用于时间序列回归的 MLP
- 总结
- 使用 TensorFlow 和 Keras 的 RNN
- 简单循环神经网络
- RNN 变种
- LSTM 网络
- GRU 网络
- TensorFlow RNN
- TensorFlow RNN 单元类
- TensorFlow RNN 模型构建类
- TensorFlow RNN 单元包装器类
- 适用于 RNN 的 Keras
- RNN 的应用领域
- 用于 MNIST 数据的 Keras 中的 RNN
- 总结
- 使用 TensorFlow 和 Keras 的时间序列数据的 RNN
- 航空公司乘客数据集
- 加载 airpass 数据集
- 可视化 airpass 数据集
- 使用 TensorFlow RNN 模型预处理数据集
- TensorFlow 中的简单 RNN
- TensorFlow 中的 LSTM
- TensorFlow 中的 GRU
- 使用 Keras RNN 模型预处理数据集
- 使用 Keras 的简单 RNN
- 使用 Keras 的 LSTM
- 使用 Keras 的 GRU
- 总结
- 使用 TensorFlow 和 Keras 的文本数据的 RNN
- 词向量表示
- 为 word2vec 模型准备数据
- 加载和准备 PTB 数据集
- 加载和准备 text8 数据集
- 准备小验证集
- 使用 TensorFlow 的 skip-gram 模型
- 使用 t-SNE 可视化单词嵌入
- keras 的 skip-gram 模型
- 使用 TensorFlow 和 Keras 中的 RNN 模型生成文本
- TensorFlow 中的 LSTM 文本生成
- Keras 中的 LSTM 文本生成
- 总结
- 使用 TensorFlow 和 Keras 的 CNN
- 理解卷积
- 了解池化
- CNN 架构模式 - LeNet
- 用于 MNIST 数据的 LeNet
- 使用 TensorFlow 的用于 MNIST 的 LeNet CNN
- 使用 Keras 的用于 MNIST 的 LeNet CNN
- 用于 CIFAR10 数据的 LeNet
- 使用 TensorFlow 的用于 CIFAR10 的 ConvNets
- 使用 Keras 的用于 CIFAR10 的 ConvNets
- 总结
- 使用 TensorFlow 和 Keras 的自编码器
- 自编码器类型
- TensorFlow 中的栈式自编码器
- Keras 中的栈式自编码器
- TensorFlow 中的去噪自编码器
- Keras 中的去噪自编码器
- TensorFlow 中的变分自编码器
- Keras 中的变分自编码器
- 总结
- TF 服务:生产中的 TensorFlow 模型
- 在 TensorFlow 中保存和恢复模型
- 使用保护程序类保存和恢复所有图变量
- 使用保护程序类保存和恢复所选变量
- 保存和恢复 Keras 模型
- TensorFlow 服务
- 安装 TF 服务
- 保存 TF 服务的模型
- 提供 TF 服务模型
- 在 Docker 容器中提供 TF 服务
- 安装 Docker
- 为 TF 服务构建 Docker 镜像
- 在 Docker 容器中提供模型
- Kubernetes 中的 TensorFlow 服务
- 安装 Kubernetes
- 将 Docker 镜像上传到 dockerhub
- 在 Kubernetes 部署
- 总结
- 迁移学习和预训练模型
- ImageNet 数据集
- 再训练或微调模型
- COCO 动物数据集和预处理图像
- TensorFlow 中的 VGG16
- 使用 TensorFlow 中预训练的 VGG16 进行图像分类
- TensorFlow 中的图像预处理,用于预训练的 VGG16
- 使用 TensorFlow 中的再训练的 VGG16 进行图像分类
- Keras 的 VGG16
- 使用 Keras 中预训练的 VGG16 进行图像分类
- 使用 Keras 中再训练的 VGG16 进行图像分类
- TensorFlow 中的 Inception v3
- 使用 TensorFlow 中的 Inception v3 进行图像分类
- 使用 TensorFlow 中的再训练的 Inception v3 进行图像分类
- 总结
- 深度强化学习
- OpenAI Gym 101
- 将简单的策略应用于 cartpole 游戏
- 强化学习 101
- Q 函数(在模型不可用时学习优化)
- RL 算法的探索与开发
- V 函数(模型可用时学习优化)
- 强化学习技巧
- 强化学习的朴素神经网络策略
- 实现 Q-Learning
- Q-Learning 的初始化和离散化
- 使用 Q-Table 进行 Q-Learning
- Q-Network 或深 Q 网络(DQN)的 Q-Learning
- 总结
- 生成性对抗网络
- 生成性对抗网络 101
- 建立和训练 GAN 的最佳实践
- 使用 TensorFlow 的简单的 GAN
- 使用 Keras 的简单的 GAN
- 使用 TensorFlow 和 Keras 的深度卷积 GAN
- 总结
- 使用 TensorFlow 集群的分布式模型
- 分布式执行策略
- TensorFlow 集群
- 定义集群规范
- 创建服务器实例
- 定义服务器和设备之间的参数和操作
- 定义并训练图以进行异步更新
- 定义并训练图以进行同步更新
- 总结
- 移动和嵌入式平台上的 TensorFlow 模型
- 移动平台上的 TensorFlow
- Android 应用中的 TF Mobile
- Android 上的 TF Mobile 演示
- iOS 应用中的 TF Mobile
- iOS 上的 TF Mobile 演示
- TensorFlow Lite
- Android 上的 TF Lite 演示
- iOS 上的 TF Lite 演示
- 总结
- R 中的 TensorFlow 和 Keras
- 在 R 中安装 TensorFlow 和 Keras 软件包
- R 中的 TF 核心 API
- R 中的 TF 估计器 API
- R 中的 Keras API
- R 中的 TensorBoard
- R 中的 tfruns 包
- 总结
- 调试 TensorFlow 模型
- 使用tf.Session.run()获取张量值
- 使用tf.Print()打印张量值
- 用tf.Assert()断言条件
- 使用 TensorFlow 调试器(tfdbg)进行调试
- 总结
- 张量处理单元