# TensorFlow 中的简单 RNN
在 TensorFlow 中定义和训练简单 RNN 的工作流程如下:
1. 定义模型的超参数:
```py
state_size = 4
n_epochs = 100
n_timesteps = n_x
learning_rate = 0.1
```
这里新的超参数是`state_size`。 `state_size`表示 RNN 小区的权重向量的数量。
1. 为模型定义`X`和`Y`参数的占位符。`X`占位符的形状为 `(batch_size, number_of_input_timesteps, number_of_inputs)`,`Y`占位符的形状为`(batch_size, number_of_output_timesteps, number_of_outputs)`。对于`batch_size`,我们使用`None`,以便我们以后可以输入任意大小的批次。
```py
X_p = tf.placeholder(tf.float32, [None, n_timesteps, n_x_vars],
name='X_p')
Y_p = tf.placeholder(tf.float32, [None, n_timesteps, n_y_vars],
name='Y_p')
```
1. 将输入占位符`X_p`转换为长度等于时间步数的张量列表,在此示例中为`n_x`或 1:
```py
# make a list of tensors of length n_timesteps
rnn_inputs = tf.unstack(X_p,axis=1)
```
1. 使用`tf.nn.rnn_cell.BasicRNNCell`创建一个简单的 RNN 单元:
```py
cell = tf.nn.rnn_cell.BasicRNNCell(state_size)
```
1. TensorFlow 提供`static_rnn`和`dynamic_rnn`便利方法(以及其他方法)分别创建静态和动态 RNN。创建静态 RNN:
```py
rnn_outputs, final_state = tf.nn.static_rnn(cell,
rnn_inputs,
dtype=tf.float32
)
```
静态 RNN 在编译时创建单元,即展开循环。动态 RNN 创建单元,即在运行时展开循环 。在本章中,我们仅展示了 `static_rnn` 的示例,但是一旦获得静态 RNN 的专业知识,就应该探索 `dynamic_rnn` 。
`static_rnn`方法采用以下参数:
* `cell`:我们之前定义的基本 RNN 单元对象。它可能是另一种单元,我们将在本章中进一步看到。
* `rnn_inputs`:形状`(batch_size, number_of_inputs)`的张量列表。
* `dtype`:初始状态和预期输出的数据类型。
1. 定义预测层的权重和偏差参数:
```py
W = tf.get_variable('W', [state_size, n_y_vars])
b = tf.get_variable('b', [n_y_vars],
initializer=tf.constant_initializer(0.0))
```
1. 将预测层定义为密集线性层:
```py
predictions = [tf.matmul(rnn_output, W) + b \
for rnn_output in rnn_outputs]
```
1. 输出 Y 是 Tensors 的形状;将其转换为张量列表:
```py
y_as_list = tf.unstack(Y_p, num=n_timesteps, axis=1)
```
1. 将损失函数定义为预测标签和实际标签之间的均方误差:
```py
mse = tf.losses.mean_squared_error
losses = [mse(labels=label, predictions=prediction)
for prediction, label in zip(predictions, y_as_list)
]
```
1. 将总损失定义为所有预测时间步长的平均损失:
```py
total_loss = tf.reduce_mean(losses)
```
1. 定义优化器以最小化`total_loss`:
```py
optimizer = tf.train.AdagradOptimizer(learning_rate).minimize(total_loss)
```
1. 现在我们已经定义了模型,损耗和优化器函数,让我们训练模型并计算训练损失:
```py
with tf.Session() as tfs:
tfs.run(tf.global_variables_initializer())
epoch_loss = 0.0
for epoch in range(n_epochs):
feed_dict={X_p: X_train.reshape(-1, n_timesteps,
n_x_vars),
Y_p: Y_train.reshape(-1, n_timesteps,
n_x_vars)
}
epoch_loss,y_train_pred,_=tfs.run([total_loss,predictions,
optimizer], feed_dict=feed_dict)
print("train mse = {}".format(epoch_loss))
```
我们得到以下值:
```py
train mse = 0.0019413739209994674
```
1. 让我们在测试数据上测试模型:
```py
feed_dict={X_p: X_test.reshape(-1, n_timesteps,n_x_vars),
Y_p: Y_test.reshape(-1, n_timesteps,n_y_vars)
}
test_loss, y_test_pred = tfs.run([total_loss,predictions],
feed_dict=feed_dict
)
print('test mse = {}'.format(test_loss))
print('test rmse = {}'.format(math.sqrt(test_loss)))
```
我们在测试数据上得到以下 mse 和 rmse(均方根误差):
```py
test mse = 0.008790395222604275
test rmse = 0.09375710758446143
```
这非常令人印象深刻。
这是一个非常简单的例子,只用一个变量值预测一个时间步。在现实生活中,输出受到多个特征的影响,并且需要预测不止一个时间步。后一类问题被称为多变量多时间步进预测问题。这些问题是使用递归神经网络进行更好预测的积极研究领域。
现在让我们重新调整预测和原始值并绘制原始值(请在笔记本中查找代码)。
我们得到以下绘图:
![](https://img.kancloud.cn/68/ed/68eda0faf0b9085c6ca1a412061aa36c_923x610.png)
令人印象深刻的是,在我们的简单示例中,预测数据几乎与原始数据相匹配。对这种准确预测的一种可能解释是,单个时间步的预测基于来自最后一个时间步的单个变量的预测,因此它们总是在先前值的附近。
尽管如此,前面示例的目的是展示在 TensorFlow 中创建 RNN 的方法。现在让我们使用 RNN 变体重新创建相同的示例。
- TensorFlow 101
- 什么是 TensorFlow?
- TensorFlow 核心
- 代码预热 - Hello TensorFlow
- 张量
- 常量
- 操作
- 占位符
- 从 Python 对象创建张量
- 变量
- 从库函数生成的张量
- 使用相同的值填充张量元素
- 用序列填充张量元素
- 使用随机分布填充张量元素
- 使用tf.get_variable()获取变量
- 数据流图或计算图
- 执行顺序和延迟加载
- 跨计算设备执行图 - CPU 和 GPU
- 将图节点放置在特定的计算设备上
- 简单放置
- 动态展示位置
- 软放置
- GPU 内存处理
- 多个图
- TensorBoard
- TensorBoard 最小的例子
- TensorBoard 详情
- 总结
- TensorFlow 的高级库
- TF Estimator - 以前的 TF 学习
- TF Slim
- TFLearn
- 创建 TFLearn 层
- TFLearn 核心层
- TFLearn 卷积层
- TFLearn 循环层
- TFLearn 正则化层
- TFLearn 嵌入层
- TFLearn 合并层
- TFLearn 估计层
- 创建 TFLearn 模型
- TFLearn 模型的类型
- 训练 TFLearn 模型
- 使用 TFLearn 模型
- PrettyTensor
- Sonnet
- 总结
- Keras 101
- 安装 Keras
- Keras 中的神经网络模型
- 在 Keras 建立模型的工作流程
- 创建 Keras 模型
- 用于创建 Keras 模型的顺序 API
- 用于创建 Keras 模型的函数式 API
- Keras 层
- Keras 核心层
- Keras 卷积层
- Keras 池化层
- Keras 本地连接层
- Keras 循环层
- Keras 嵌入层
- Keras 合并层
- Keras 高级激活层
- Keras 正则化层
- Keras 噪音层
- 将层添加到 Keras 模型
- 用于将层添加到 Keras 模型的顺序 API
- 用于向 Keras 模型添加层的函数式 API
- 编译 Keras 模型
- 训练 Keras 模型
- 使用 Keras 模型进行预测
- Keras 的附加模块
- MNIST 数据集的 Keras 序列模型示例
- 总结
- 使用 TensorFlow 进行经典机器学习
- 简单的线性回归
- 数据准备
- 构建一个简单的回归模型
- 定义输入,参数和其他变量
- 定义模型
- 定义损失函数
- 定义优化器函数
- 训练模型
- 使用训练的模型进行预测
- 多元回归
- 正则化回归
- 套索正则化
- 岭正则化
- ElasticNet 正则化
- 使用逻辑回归进行分类
- 二分类的逻辑回归
- 多类分类的逻辑回归
- 二分类
- 多类分类
- 总结
- 使用 TensorFlow 和 Keras 的神经网络和 MLP
- 感知机
- 多层感知机
- 用于图像分类的 MLP
- 用于 MNIST 分类的基于 TensorFlow 的 MLP
- 用于 MNIST 分类的基于 Keras 的 MLP
- 用于 MNIST 分类的基于 TFLearn 的 MLP
- 使用 TensorFlow,Keras 和 TFLearn 的 MLP 总结
- 用于时间序列回归的 MLP
- 总结
- 使用 TensorFlow 和 Keras 的 RNN
- 简单循环神经网络
- RNN 变种
- LSTM 网络
- GRU 网络
- TensorFlow RNN
- TensorFlow RNN 单元类
- TensorFlow RNN 模型构建类
- TensorFlow RNN 单元包装器类
- 适用于 RNN 的 Keras
- RNN 的应用领域
- 用于 MNIST 数据的 Keras 中的 RNN
- 总结
- 使用 TensorFlow 和 Keras 的时间序列数据的 RNN
- 航空公司乘客数据集
- 加载 airpass 数据集
- 可视化 airpass 数据集
- 使用 TensorFlow RNN 模型预处理数据集
- TensorFlow 中的简单 RNN
- TensorFlow 中的 LSTM
- TensorFlow 中的 GRU
- 使用 Keras RNN 模型预处理数据集
- 使用 Keras 的简单 RNN
- 使用 Keras 的 LSTM
- 使用 Keras 的 GRU
- 总结
- 使用 TensorFlow 和 Keras 的文本数据的 RNN
- 词向量表示
- 为 word2vec 模型准备数据
- 加载和准备 PTB 数据集
- 加载和准备 text8 数据集
- 准备小验证集
- 使用 TensorFlow 的 skip-gram 模型
- 使用 t-SNE 可视化单词嵌入
- keras 的 skip-gram 模型
- 使用 TensorFlow 和 Keras 中的 RNN 模型生成文本
- TensorFlow 中的 LSTM 文本生成
- Keras 中的 LSTM 文本生成
- 总结
- 使用 TensorFlow 和 Keras 的 CNN
- 理解卷积
- 了解池化
- CNN 架构模式 - LeNet
- 用于 MNIST 数据的 LeNet
- 使用 TensorFlow 的用于 MNIST 的 LeNet CNN
- 使用 Keras 的用于 MNIST 的 LeNet CNN
- 用于 CIFAR10 数据的 LeNet
- 使用 TensorFlow 的用于 CIFAR10 的 ConvNets
- 使用 Keras 的用于 CIFAR10 的 ConvNets
- 总结
- 使用 TensorFlow 和 Keras 的自编码器
- 自编码器类型
- TensorFlow 中的栈式自编码器
- Keras 中的栈式自编码器
- TensorFlow 中的去噪自编码器
- Keras 中的去噪自编码器
- TensorFlow 中的变分自编码器
- Keras 中的变分自编码器
- 总结
- TF 服务:生产中的 TensorFlow 模型
- 在 TensorFlow 中保存和恢复模型
- 使用保护程序类保存和恢复所有图变量
- 使用保护程序类保存和恢复所选变量
- 保存和恢复 Keras 模型
- TensorFlow 服务
- 安装 TF 服务
- 保存 TF 服务的模型
- 提供 TF 服务模型
- 在 Docker 容器中提供 TF 服务
- 安装 Docker
- 为 TF 服务构建 Docker 镜像
- 在 Docker 容器中提供模型
- Kubernetes 中的 TensorFlow 服务
- 安装 Kubernetes
- 将 Docker 镜像上传到 dockerhub
- 在 Kubernetes 部署
- 总结
- 迁移学习和预训练模型
- ImageNet 数据集
- 再训练或微调模型
- COCO 动物数据集和预处理图像
- TensorFlow 中的 VGG16
- 使用 TensorFlow 中预训练的 VGG16 进行图像分类
- TensorFlow 中的图像预处理,用于预训练的 VGG16
- 使用 TensorFlow 中的再训练的 VGG16 进行图像分类
- Keras 的 VGG16
- 使用 Keras 中预训练的 VGG16 进行图像分类
- 使用 Keras 中再训练的 VGG16 进行图像分类
- TensorFlow 中的 Inception v3
- 使用 TensorFlow 中的 Inception v3 进行图像分类
- 使用 TensorFlow 中的再训练的 Inception v3 进行图像分类
- 总结
- 深度强化学习
- OpenAI Gym 101
- 将简单的策略应用于 cartpole 游戏
- 强化学习 101
- Q 函数(在模型不可用时学习优化)
- RL 算法的探索与开发
- V 函数(模型可用时学习优化)
- 强化学习技巧
- 强化学习的朴素神经网络策略
- 实现 Q-Learning
- Q-Learning 的初始化和离散化
- 使用 Q-Table 进行 Q-Learning
- Q-Network 或深 Q 网络(DQN)的 Q-Learning
- 总结
- 生成性对抗网络
- 生成性对抗网络 101
- 建立和训练 GAN 的最佳实践
- 使用 TensorFlow 的简单的 GAN
- 使用 Keras 的简单的 GAN
- 使用 TensorFlow 和 Keras 的深度卷积 GAN
- 总结
- 使用 TensorFlow 集群的分布式模型
- 分布式执行策略
- TensorFlow 集群
- 定义集群规范
- 创建服务器实例
- 定义服务器和设备之间的参数和操作
- 定义并训练图以进行异步更新
- 定义并训练图以进行同步更新
- 总结
- 移动和嵌入式平台上的 TensorFlow 模型
- 移动平台上的 TensorFlow
- Android 应用中的 TF Mobile
- Android 上的 TF Mobile 演示
- iOS 应用中的 TF Mobile
- iOS 上的 TF Mobile 演示
- TensorFlow Lite
- Android 上的 TF Lite 演示
- iOS 上的 TF Lite 演示
- 总结
- R 中的 TensorFlow 和 Keras
- 在 R 中安装 TensorFlow 和 Keras 软件包
- R 中的 TF 核心 API
- R 中的 TF 估计器 API
- R 中的 Keras API
- R 中的 TensorBoard
- R 中的 tfruns 包
- 总结
- 调试 TensorFlow 模型
- 使用tf.Session.run()获取张量值
- 使用tf.Print()打印张量值
- 用tf.Assert()断言条件
- 使用 TensorFlow 调试器(tfdbg)进行调试
- 总结
- 张量处理单元