# 将简单的策略应用于 cartpole 游戏
到目前为止,我们已经随机选择了一个动作并应用它。现在让我们应用一些逻辑来挑选行动而不是随机机会。第三个观察指的是角度。如果角度大于零,则意味着杆向右倾斜,因此我们将推车向右移动(1)。否则,我们将购物车向左移动(0)。我们来看一个例子:
1. 我们定义了两个策略函数如下:
```py
def policy_logic(env,obs):
return 1 if obs[2] > 0 else 0
def policy_random(env,obs):
return env.action_space.sample()
```
1. 接下来,我们定义一个将针对特定数量的剧集运行的实验函数;每一集一直持续到游戏损失,即`done`为`True`。我们使用`rewards_max`来指示何时突破循环,因为我们不希望永远运行实验:
```py
def experiment(policy, n_episodes, rewards_max):
rewards=np.empty(shape=(n_episodes))
env = gym.make('CartPole-v0')
for i in range(n_episodes):
obs = env.reset()
done = False
episode_reward = 0
while not done:
action = policy(env,obs)
obs, reward, done, info = env.step(action)
episode_reward += reward
if episode_reward > rewards_max:
break
rewards[i]=episode_reward
print('Policy:{}, Min reward:{}, Max reward:{}'
.format(policy.__name__,
min(rewards),
max(rewards)))
```
1. 我们运行实验 100 次,或直到奖励小于或等于`rewards_max`,即设置为 10,000:
```py
n_episodes = 100
rewards_max = 10000
experiment(policy_random, n_episodes, rewards_max)
experiment(policy_logic, n_episodes, rewards_max)
```
我们可以看到逻辑选择的动作比随机选择的动作更好,但不是更好:
```py
Policy:policy_random, Min reward:9.0, Max reward:63.0, Average reward:20.26
Policy:policy_logic, Min reward:24.0, Max reward:66.0, Average reward:42.81
```
现在让我们进一步修改选择动作的过程 - 基于参数。参数将乘以观察值,并且将基于乘法结果是零还是一来选择动作。让我们修改随机搜索方法,我们随机初始化参数。代码如下:
```py
def policy_logic(theta,obs):
# just ignore theta
return 1 if obs[2] > 0 else 0
def policy_random(theta,obs):
return 0 if np.matmul(theta,obs) < 0 else 1
def episode(env, policy, rewards_max):
obs = env.reset()
done = False
episode_reward = 0
if policy.__name__ in ['policy_random']:
theta = np.random.rand(4) * 2 - 1
else:
theta = None
while not done:
action = policy(theta,obs)
obs, reward, done, info = env.step(action)
episode_reward += reward
if episode_reward > rewards_max:
break
return episode_reward
def experiment(policy, n_episodes, rewards_max):
rewards=np.empty(shape=(n_episodes))
env = gym.make('CartPole-v0')
for i in range(n_episodes):
rewards[i]=episode(env,policy,rewards_max)
#print("Episode finished at t{}".format(reward))
print('Policy:{}, Min reward:{}, Max reward:{}, Average reward:{}'
.format(policy.__name__,
np.min(rewards),
np.max(rewards),
np.mean(rewards)))
n_episodes = 100
rewards_max = 10000
experiment(policy_random, n_episodes, rewards_max)
experiment(policy_logic, n_episodes, rewards_max)
```
我们可以看到随机搜索确实改善了结果:
```py
Policy:policy_random, Min reward:8.0, Max reward:200.0, Average reward:40.04
Policy:policy_logic, Min reward:25.0, Max reward:62.0, Average reward:43.03
```
通过随机搜索,我们改进了结果以获得 200 的最大奖励。平均而言,随机搜索的奖励较低,因为随机搜索会尝试各种不良参数,从而降低整体结果。但是,我们可以从所有运行中选择最佳参数,然后在生产中使用最佳参数。让我们修改代码以首先训练参数:
```py
def policy_logic(theta,obs):
# just ignore theta
return 1 if obs[2] > 0 else 0
def policy_random(theta,obs):
return 0 if np.matmul(theta,obs) < 0 else 1
def episode(env,policy, rewards_max,theta):
obs = env.reset()
done = False
episode_reward = 0
while not done:
action = policy(theta,obs)
obs, reward, done, info = env.step(action)
episode_reward += reward
if episode_reward > rewards_max:
break
return episode_reward
def train(policy, n_episodes, rewards_max):
env = gym.make('CartPole-v0')
theta_best = np.empty(shape=[4])
reward_best = 0
for i in range(n_episodes):
if policy.__name__ in ['policy_random']: theta = np.random.rand(4) * 2 - 1
else:
theta = None
reward_episode=episode(env,policy,rewards_max, theta)
if reward_episode > reward_best:
reward_best = reward_episode
theta_best = theta.copy()
return reward_best,theta_best
def experiment(policy, n_episodes, rewards_max, theta=None):
rewards=np.empty(shape=[n_episodes])
env = gym.make('CartPole-v0')
for i in range(n_episodes):
rewards[i]=episode(env,policy,rewards_max,theta)
#print("Episode finished at t{}".format(reward))
print('Policy:{}, Min reward:{}, Max reward:{}, Average reward:{}'
.format(policy.__name__,
np.min(rewards),
np.max(rewards),
np.mean(rewards)))
n_episodes = 100
rewards_max = 10000
reward,theta = train(policy_random, n_episodes, rewards_max)
print('trained theta: {}, rewards: {}'.format(theta,reward))
experiment(policy_random, n_episodes, rewards_max, theta)
experiment(policy_logic, n_episodes, rewards_max)
```
我们训练了 100 集,然后使用最佳参数为随机搜索策略运行实验:
```py
n_episodes = 100
rewards_max = 10000
reward,theta = train(policy_random, n_episodes, rewards_max)
print('trained theta: {}, rewards: {}'.format(theta,reward))
experiment(policy_random, n_episodes, rewards_max, theta)
experiment(policy_logic, n_episodes, rewards_max)
```
我们发现训练参数给出了 200 的最佳结果:
```py
trained theta: [-0.14779543 0.93269603 0.70896423 0.84632461], rewards: 200.0
Policy:policy_random, Min reward:200.0, Max reward:200.0, Average reward:200.0
Policy:policy_logic, Min reward:24.0, Max reward:63.0, Average reward:41.94
```
我们可以优化训练代码以继续训练,直到我们获得最大奖励。笔记本`ch-13a_Reinforcement_Learning_NN`中提供了此优化的代码。
现在我们已经学习了 OpenAI Gym 的基础知识,让我们学习强化学习。
- TensorFlow 101
- 什么是 TensorFlow?
- TensorFlow 核心
- 代码预热 - Hello TensorFlow
- 张量
- 常量
- 操作
- 占位符
- 从 Python 对象创建张量
- 变量
- 从库函数生成的张量
- 使用相同的值填充张量元素
- 用序列填充张量元素
- 使用随机分布填充张量元素
- 使用tf.get_variable()获取变量
- 数据流图或计算图
- 执行顺序和延迟加载
- 跨计算设备执行图 - CPU 和 GPU
- 将图节点放置在特定的计算设备上
- 简单放置
- 动态展示位置
- 软放置
- GPU 内存处理
- 多个图
- TensorBoard
- TensorBoard 最小的例子
- TensorBoard 详情
- 总结
- TensorFlow 的高级库
- TF Estimator - 以前的 TF 学习
- TF Slim
- TFLearn
- 创建 TFLearn 层
- TFLearn 核心层
- TFLearn 卷积层
- TFLearn 循环层
- TFLearn 正则化层
- TFLearn 嵌入层
- TFLearn 合并层
- TFLearn 估计层
- 创建 TFLearn 模型
- TFLearn 模型的类型
- 训练 TFLearn 模型
- 使用 TFLearn 模型
- PrettyTensor
- Sonnet
- 总结
- Keras 101
- 安装 Keras
- Keras 中的神经网络模型
- 在 Keras 建立模型的工作流程
- 创建 Keras 模型
- 用于创建 Keras 模型的顺序 API
- 用于创建 Keras 模型的函数式 API
- Keras 层
- Keras 核心层
- Keras 卷积层
- Keras 池化层
- Keras 本地连接层
- Keras 循环层
- Keras 嵌入层
- Keras 合并层
- Keras 高级激活层
- Keras 正则化层
- Keras 噪音层
- 将层添加到 Keras 模型
- 用于将层添加到 Keras 模型的顺序 API
- 用于向 Keras 模型添加层的函数式 API
- 编译 Keras 模型
- 训练 Keras 模型
- 使用 Keras 模型进行预测
- Keras 的附加模块
- MNIST 数据集的 Keras 序列模型示例
- 总结
- 使用 TensorFlow 进行经典机器学习
- 简单的线性回归
- 数据准备
- 构建一个简单的回归模型
- 定义输入,参数和其他变量
- 定义模型
- 定义损失函数
- 定义优化器函数
- 训练模型
- 使用训练的模型进行预测
- 多元回归
- 正则化回归
- 套索正则化
- 岭正则化
- ElasticNet 正则化
- 使用逻辑回归进行分类
- 二分类的逻辑回归
- 多类分类的逻辑回归
- 二分类
- 多类分类
- 总结
- 使用 TensorFlow 和 Keras 的神经网络和 MLP
- 感知机
- 多层感知机
- 用于图像分类的 MLP
- 用于 MNIST 分类的基于 TensorFlow 的 MLP
- 用于 MNIST 分类的基于 Keras 的 MLP
- 用于 MNIST 分类的基于 TFLearn 的 MLP
- 使用 TensorFlow,Keras 和 TFLearn 的 MLP 总结
- 用于时间序列回归的 MLP
- 总结
- 使用 TensorFlow 和 Keras 的 RNN
- 简单循环神经网络
- RNN 变种
- LSTM 网络
- GRU 网络
- TensorFlow RNN
- TensorFlow RNN 单元类
- TensorFlow RNN 模型构建类
- TensorFlow RNN 单元包装器类
- 适用于 RNN 的 Keras
- RNN 的应用领域
- 用于 MNIST 数据的 Keras 中的 RNN
- 总结
- 使用 TensorFlow 和 Keras 的时间序列数据的 RNN
- 航空公司乘客数据集
- 加载 airpass 数据集
- 可视化 airpass 数据集
- 使用 TensorFlow RNN 模型预处理数据集
- TensorFlow 中的简单 RNN
- TensorFlow 中的 LSTM
- TensorFlow 中的 GRU
- 使用 Keras RNN 模型预处理数据集
- 使用 Keras 的简单 RNN
- 使用 Keras 的 LSTM
- 使用 Keras 的 GRU
- 总结
- 使用 TensorFlow 和 Keras 的文本数据的 RNN
- 词向量表示
- 为 word2vec 模型准备数据
- 加载和准备 PTB 数据集
- 加载和准备 text8 数据集
- 准备小验证集
- 使用 TensorFlow 的 skip-gram 模型
- 使用 t-SNE 可视化单词嵌入
- keras 的 skip-gram 模型
- 使用 TensorFlow 和 Keras 中的 RNN 模型生成文本
- TensorFlow 中的 LSTM 文本生成
- Keras 中的 LSTM 文本生成
- 总结
- 使用 TensorFlow 和 Keras 的 CNN
- 理解卷积
- 了解池化
- CNN 架构模式 - LeNet
- 用于 MNIST 数据的 LeNet
- 使用 TensorFlow 的用于 MNIST 的 LeNet CNN
- 使用 Keras 的用于 MNIST 的 LeNet CNN
- 用于 CIFAR10 数据的 LeNet
- 使用 TensorFlow 的用于 CIFAR10 的 ConvNets
- 使用 Keras 的用于 CIFAR10 的 ConvNets
- 总结
- 使用 TensorFlow 和 Keras 的自编码器
- 自编码器类型
- TensorFlow 中的栈式自编码器
- Keras 中的栈式自编码器
- TensorFlow 中的去噪自编码器
- Keras 中的去噪自编码器
- TensorFlow 中的变分自编码器
- Keras 中的变分自编码器
- 总结
- TF 服务:生产中的 TensorFlow 模型
- 在 TensorFlow 中保存和恢复模型
- 使用保护程序类保存和恢复所有图变量
- 使用保护程序类保存和恢复所选变量
- 保存和恢复 Keras 模型
- TensorFlow 服务
- 安装 TF 服务
- 保存 TF 服务的模型
- 提供 TF 服务模型
- 在 Docker 容器中提供 TF 服务
- 安装 Docker
- 为 TF 服务构建 Docker 镜像
- 在 Docker 容器中提供模型
- Kubernetes 中的 TensorFlow 服务
- 安装 Kubernetes
- 将 Docker 镜像上传到 dockerhub
- 在 Kubernetes 部署
- 总结
- 迁移学习和预训练模型
- ImageNet 数据集
- 再训练或微调模型
- COCO 动物数据集和预处理图像
- TensorFlow 中的 VGG16
- 使用 TensorFlow 中预训练的 VGG16 进行图像分类
- TensorFlow 中的图像预处理,用于预训练的 VGG16
- 使用 TensorFlow 中的再训练的 VGG16 进行图像分类
- Keras 的 VGG16
- 使用 Keras 中预训练的 VGG16 进行图像分类
- 使用 Keras 中再训练的 VGG16 进行图像分类
- TensorFlow 中的 Inception v3
- 使用 TensorFlow 中的 Inception v3 进行图像分类
- 使用 TensorFlow 中的再训练的 Inception v3 进行图像分类
- 总结
- 深度强化学习
- OpenAI Gym 101
- 将简单的策略应用于 cartpole 游戏
- 强化学习 101
- Q 函数(在模型不可用时学习优化)
- RL 算法的探索与开发
- V 函数(模型可用时学习优化)
- 强化学习技巧
- 强化学习的朴素神经网络策略
- 实现 Q-Learning
- Q-Learning 的初始化和离散化
- 使用 Q-Table 进行 Q-Learning
- Q-Network 或深 Q 网络(DQN)的 Q-Learning
- 总结
- 生成性对抗网络
- 生成性对抗网络 101
- 建立和训练 GAN 的最佳实践
- 使用 TensorFlow 的简单的 GAN
- 使用 Keras 的简单的 GAN
- 使用 TensorFlow 和 Keras 的深度卷积 GAN
- 总结
- 使用 TensorFlow 集群的分布式模型
- 分布式执行策略
- TensorFlow 集群
- 定义集群规范
- 创建服务器实例
- 定义服务器和设备之间的参数和操作
- 定义并训练图以进行异步更新
- 定义并训练图以进行同步更新
- 总结
- 移动和嵌入式平台上的 TensorFlow 模型
- 移动平台上的 TensorFlow
- Android 应用中的 TF Mobile
- Android 上的 TF Mobile 演示
- iOS 应用中的 TF Mobile
- iOS 上的 TF Mobile 演示
- TensorFlow Lite
- Android 上的 TF Lite 演示
- iOS 上的 TF Lite 演示
- 总结
- R 中的 TensorFlow 和 Keras
- 在 R 中安装 TensorFlow 和 Keras 软件包
- R 中的 TF 核心 API
- R 中的 TF 估计器 API
- R 中的 Keras API
- R 中的 TensorBoard
- R 中的 tfruns 包
- 总结
- 调试 TensorFlow 模型
- 使用tf.Session.run()获取张量值
- 使用tf.Print()打印张量值
- 用tf.Assert()断言条件
- 使用 TensorFlow 调试器(tfdbg)进行调试
- 总结
- 张量处理单元