💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
# 使用 TensorFlow 和 Keras 的深度卷积 GAN 您可以按照 Jupyter 笔记本中的代码`ch-14b_DCGAN`。 在 DCGAN 中,判别器和生成器都是使用深度卷积网络实现的: 1. 在此示例中,我们决定将生成器实现为以下网络: ```py Generator: _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= g_in (Dense) (None, 3200) 822400 _________________________________________________________________ g_in_act (Activation) (None, 3200) 0 _________________________________________________________________ g_in_reshape (Reshape) (None, 5, 5, 128) 0 _________________________________________________________________ g_0_up2d (UpSampling2D) (None, 10, 10, 128) 0 _________________________________________________________________ g_0_conv2d (Conv2D) (None, 10, 10, 64) 204864 _________________________________________________________________ g_0_act (Activation) (None, 10, 10, 64) 0 _________________________________________________________________ g_1_up2d (UpSampling2D) (None, 20, 20, 64) 0 _________________________________________________________________ g_1_conv2d (Conv2D) (None, 20, 20, 32) 51232 _________________________________________________________________ g_1_act (Activation) (None, 20, 20, 32) 0 _________________________________________________________________ g_2_up2d (UpSampling2D) (None, 40, 40, 32) 0 _________________________________________________________________ g_2_conv2d (Conv2D) (None, 40, 40, 16) 12816 _________________________________________________________________ g_2_act (Activation) (None, 40, 40, 16) 0 _________________________________________________________________ g_out_flatten (Flatten) (None, 25600) 0 _________________________________________________________________ g_out (Dense) (None, 784) 20071184 ================================================================= Total params: 21,162,496 Trainable params: 21,162,496 Non-trainable params: 0 ``` 1. 生成器是一个更强大的网络,有三个卷积层,然后是 tanh 激活。我们将判别器网络定义如下: ```py Discriminator: _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= d_0_reshape (Reshape) (None, 28, 28, 1) 0 _________________________________________________________________ d_0_conv2d (Conv2D) (None, 28, 28, 64) 1664 _________________________________________________________________ d_0_act (Activation) (None, 28, 28, 64) 0 _________________________________________________________________ d_0_maxpool (MaxPooling2D) (None, 14, 14, 64) 0 _________________________________________________________________ d_out_flatten (Flatten) (None, 12544) 0 _________________________________________________________________ d_out (Dense) (None, 1) 12545 ================================================================= Total params: 14,209 Trainable params: 14,209 Non-trainable params: 0 _________________________________________________________________ ``` 1. GAN 网络由判别器和生成器组成,如前所述: ```py GAN: _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= z_in (InputLayer) (None, 256) 0 _________________________________________________________________ g (Sequential) (None, 784) 21162496 _________________________________________________________________ d (Sequential) (None, 1) 14209 ================================================================= Total params: 21,176,705 Trainable params: 21,162,496 Non-trainable params: 14,209 _________________________________________________________________ ``` 当我们运行这个模型 400 个周期时,我们得到以下输出: ![](https://img.kancloud.cn/96/e5/96e534a5894da6ff594ab1d64d04b7be_791x675.png) 如您所见,DCGAN 能够从 epoch 100 本身开始生成高质量的数字。 DGCAN 已被用于样式转移,图像和标题的生成以及图像代数,即拍摄一个图像的一部分并将其添加到另一个图像的部分。 MNIST DCGAN 的完整代码在笔记本`ch-14b_DCGAN` 中提供。