ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
# 使用保护程序类保存和恢复所有图变量 我们进行如下: 1. 要使用`saver`类,首先要创建此类的对象: ```py saver = tf.train.Saver() ``` 1. 保存图中所有变量的最简单方法是使用以下两个参数调用`save()`方法:会话对象和磁盘上保存变量的文件的路径: ```py with tf.Session() as tfs: ... saver.save(tfs,"saved-models/model.ckpt") ``` 1. 要恢复变量,调用`restore()`方法: ```py with tf.Session() as tfs: saver.restore(tfs,"saved-models/model.ckpt") ... ``` 1. 让我们重温一下[第 1 章](../Text/8.html),TensorFlow 101 的例子,在简单的例子中保存变量的代码如下: ```py # Assume Linear Model y = w * x + b # Define model parameters w = tf.Variable([.3], tf.float32) b = tf.Variable([-.3], tf.float32) # Define model input and output x = tf.placeholder(tf.float32) y = w * x + b output = 0 # create saver object saver = tf.train.Saver() with tf.Session() as tfs: # initialize and print the variable y tfs.run(tf.global_variables_initializer()) output = tfs.run(y,{x:[1,2,3,4]}) saved_model_file = saver.save(tfs, 'saved-models/full-graph-save-example.ckpt') print('Model saved in {}'.format(saved_model_file)) print('Values of variables w,b: {}{}' .format(w.eval(),b.eval())) print('output={}'.format(output)) ``` 我们得到以下输出: ```py Model saved in saved-models/full-graph-save-example.ckpt Values of variables w,b: [ 0.30000001][-0.30000001] output=[ 0\. 0.30000001 0.60000002 0.90000004] ``` 1. 现在让我们从刚刚创建的检查点文件中恢复变量: ```py # Assume Linear Model y = w * x + b # Define model parameters w = tf.Variable([0], dtype=tf.float32) b = tf.Variable([0], dtype=tf.float32) # Define model input and output x = tf.placeholder(dtype=tf.float32) y = w * x + b output = 0 # create saver object saver = tf.train.Saver() with tf.Session() as tfs: saved_model_file = saver.restore(tfs, 'saved-models/full-graph-save-example.ckpt') print('Values of variables w,b: {}{}' .format(w.eval(),b.eval())) output = tfs.run(y,{x:[1,2,3,4]}) print('output={}'.format(output)) ``` 您会注意到在恢复代码中我们没有调用`tf.global_variables_initializer()`,因为不需要初始化变量,因为它们将从文件中恢复。我们得到以下输出,它是根据恢复的变量计算得出的: ```py INFO:tensorflow:Restoring parameters from saved-models/full-graph-save-example.ckpt Values of variables w,b: [ 0.30000001][-0.30000001] output=[ 0\. 0.30000001 0.60000002 0.90000004] ```