# 总体介绍
之所以把*TreeSet*和*TreeMap*放在一起讲解,是因为二者在Java里有着相同的实现,前者仅仅是对后者做了一层包装,也就是说***TreeSet*里面有一个*TreeMap*(适配器模式)\*\*。因此本文将重点分析*TreeMap*。
Java*TreeMap*实现了*SortedMap*接口,也就是说会按照`key`的大小顺序对*Map*中的元素进行排序,`key`大小的评判可以通过其本身的自然顺序(natural ordering),也可以通过构造时传入的比较器(Comparator)。
***TreeMap*底层通过红黑树(Red-Black tree)实现**,也就意味着`containsKey()`,`get()`,`put()`,`remove()`都有着`log(n)`的时间复杂度。其具体算法实现参照了《算法导论》。
[![TreeMap_base.png](https://github.com/CarpenterLee/JCFInternals/raw/049c84bb65a3114ba4b8355d83c490fb9b26c6af/PNGFigures/TreeMap_base.png)](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/PNGFigures/TreeMap_base.png)
出于性能原因,*TreeMap*是非同步的(not synchronized),如果需要在多线程环境使用,需要程序员手动同步;或者通过如下方式将*TreeMap*包装成(wrapped)同步的:
`SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));`
**红黑树是一种近似平衡的二叉查找树,它能够确保任何一个节点的左右子树的高度差不会超过二者中较低那个的一陪**。具体来说,红黑树是满足如下条件的二叉查找树(binary search tree):
1. 每个节点要么是红色,要么是黑色。
2. 根节点必须是黑色
3. 红色节点不能连续(也即是,红色节点的孩子和父亲都不能是红色)。
4. 对于每个节点,从该点至`null`(树尾端)的任何路径,都含有相同个数的黑色节点。
在树的结构发生改变时(插入或者删除操作),往往会破坏上述条件3或条件4,需要通过调整使得查找树重新满足红黑树的约束条件。
# [](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/markdown/5-TreeSet%20and%20TreeMap.md#预备知识)预备知识
前文说到当查找树的结构发生改变时,红黑树的约束条件可能被破坏,需要通过调整使得查找树重新满足红黑树的约束条件。调整可以分为两类:一类是颜色调整,即改变某个节点的颜色;另一类是结构调整,集改变检索树的结构关系。结构调整过程包含两个基本操作:**左旋(Rotate Left),右旋(RotateRight)**。
## [](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/markdown/5-TreeSet%20and%20TreeMap.md#左旋)左旋
左旋的过程是将`x`的右子树绕`x`逆时针旋转,使得`x`的右子树成为`x`的父亲,同时修改相关节点的引用。旋转之后,二叉查找树的属性仍然满足。
[![TreeMap_rotateLeft.png](https://github.com/CarpenterLee/JCFInternals/raw/049c84bb65a3114ba4b8355d83c490fb9b26c6af/PNGFigures/TreeMap_rotateLeft.png)](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/PNGFigures/TreeMap_rotateLeft.png)
*TreeMap*中左旋代码如下:
~~~java
//Rotate Left
private void rotateLeft(Entry<K,V> p) {
if (p != null) {
Entry<K,V> r = p.right;
p.right = r.left;
if (r.left != null)
r.left.parent = p;
r.parent = p.parent;
if (p.parent == null)
root = r;
else if (p.parent.left == p)
p.parent.left = r;
else
p.parent.right = r;
r.left = p;
p.parent = r;
}
}
~~~
## [](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/markdown/5-TreeSet%20and%20TreeMap.md#右旋)右旋
右旋的过程是将`x`的左子树绕`x`顺时针旋转,使得`x`的左子树成为`x`的父亲,同时修改相关节点的引用。旋转之后,二叉查找树的属性仍然满足。
[![TreeMap_rotateRight.png](https://github.com/CarpenterLee/JCFInternals/raw/049c84bb65a3114ba4b8355d83c490fb9b26c6af/PNGFigures/TreeMap_rotateRight.png)](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/PNGFigures/TreeMap_rotateRight.png)
*TreeMap*中右旋代码如下:
~~~java
//Rotate Right
private void rotateRight(Entry<K,V> p) {
if (p != null) {
Entry<K,V> l = p.left;
p.left = l.right;
if (l.right != null) l.right.parent = p;
l.parent = p.parent;
if (p.parent == null)
root = l;
else if (p.parent.right == p)
p.parent.right = l;
else p.parent.left = l;
l.right = p;
p.parent = l;
}
}
~~~
## [](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/markdown/5-TreeSet%20and%20TreeMap.md#寻找节点后继)寻找节点后继
对于一棵二叉查找树,给定节点t,其后继(树中比大于t的最小的那个元素)可以通过如下方式找到:
> 1. t的右子树不空,则t的后继是其右子树中最小的那个元素。
> 2. t的右孩子为空,则t的后继是其第一个向左走的祖先。
后继节点在红黑树的删除操作中将会用到。
[![TreeMap_successor.png](https://github.com/CarpenterLee/JCFInternals/raw/049c84bb65a3114ba4b8355d83c490fb9b26c6af/PNGFigures/TreeMap_successor.png)](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/PNGFigures/TreeMap_successor.png)
*TreeMap*中寻找节点后继的代码如下:
~~~java
// 寻找节点后继函数successor()
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
if (t == null)
return null;
else if (t.right != null) {// 1. t的右子树不空,则t的后继是其右子树中最小的那个元素
Entry<K,V> p = t.right;
while (p.left != null)
p = p.left;
return p;
} else {// 2. t的右孩子为空,则t的后继是其第一个向左走的祖先
Entry<K,V> p = t.parent;
Entry<K,V> ch = t;
while (p != null && ch == p.right) {
ch = p;
p = p.parent;
}
return p;
}
}
~~~
# [](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/markdown/5-TreeSet%20and%20TreeMap.md#方法剖析)方法剖析
## [](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/markdown/5-TreeSet%20and%20TreeMap.md#get)get()
`get(Object key)`方法根据指定的`key`值返回对应的`value`,该方法调用了`getEntry(Object key)`得到相应的`entry`,然后返回`entry.value`。因此`getEntry()`是算法的核心。算法思想是根据`key`的自然顺序(或者比较器顺序)对二叉查找树进行查找,直到找到满足`k.compareTo(p.key) == 0`的`entry`。
[![TreeMap_getEntry.png](https://github.com/CarpenterLee/JCFInternals/raw/049c84bb65a3114ba4b8355d83c490fb9b26c6af/PNGFigures/TreeMap_getEntry.png)](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/PNGFigures/TreeMap_getEntry.png)
具体代码如下:
~~~java
//getEntry()方法
final Entry<K,V> getEntry(Object key) {
......
if (key == null)//不允许key值为null
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;//使用元素的自然顺序
Entry<K,V> p = root;
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)//向左找
p = p.left;
else if (cmp > 0)//向右找
p = p.right;
else
return p;
}
return null;
}
~~~
## [](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/markdown/5-TreeSet%20and%20TreeMap.md#put)put()
`put(K key, V value)`方法是将指定的`key`,`value`对添加到`map`里。该方法首先会对`map`做一次查找,看是否包含该元组,如果已经包含则直接返回,查找过程类似于`getEntry()`方法;如果没有找到则会在红黑树中插入新的`entry`,如果插入之后破坏了红黑树的约束条件,还需要进行调整(旋转,改变某些节点的颜色)。
~~~java
public V put(K key, V value) {
......
int cmp;
Entry<K,V> parent;
if (key == null)
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;//使用元素的自然顺序
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0) t = t.left;//向左找
else if (cmp > 0) t = t.right;//向右找
else return t.setValue(value);
} while (t != null);
Entry<K,V> e = new Entry<>(key, value, parent);//创建并插入新的entry
if (cmp < 0) parent.left = e;
else parent.right = e;
fixAfterInsertion(e);//调整
size++;
return null;
}
~~~
上述代码的插入部分并不难理解:首先在红黑树上找到合适的位置,然后创建新的`entry`并插入(当然,新插入的节点一定是树的叶子)。难点是调整函数`fixAfterInsertion()`,前面已经说过,调整往往需要1.改变某些节点的颜色,2.对某些节点进行旋转。
[![TreeMap_put.png](https://github.com/CarpenterLee/JCFInternals/raw/049c84bb65a3114ba4b8355d83c490fb9b26c6af/PNGFigures/TreeMap_put.png)](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/PNGFigures/TreeMap_put.png)
调整函数`fixAfterInsertion()`的具体代码如下,其中用到了上文中提到的`rotateLeft()`和`rotateRight()`函数。通过代码我们能够看到,情况2其实是落在情况3内的。情况4~情况6跟前三种情况是对称的,因此图解中并没有画出后三种情况,读者可以参考代码自行理解。
~~~java
//红黑树调整函数fixAfterInsertion()
private void fixAfterInsertion(Entry<K,V> x) {
x.color = RED;
while (x != null && x != root && x.parent.color == RED) {
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
Entry<K,V> y = rightOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK); // 情况1
setColor(y, BLACK); // 情况1
setColor(parentOf(parentOf(x)), RED); // 情况1
x = parentOf(parentOf(x)); // 情况1
} else {
if (x == rightOf(parentOf(x))) {
x = parentOf(x); // 情况2
rotateLeft(x); // 情况2
}
setColor(parentOf(x), BLACK); // 情况3
setColor(parentOf(parentOf(x)), RED); // 情况3
rotateRight(parentOf(parentOf(x))); // 情况3
}
} else {
Entry<K,V> y = leftOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK); // 情况4
setColor(y, BLACK); // 情况4
setColor(parentOf(parentOf(x)), RED); // 情况4
x = parentOf(parentOf(x)); // 情况4
} else {
if (x == leftOf(parentOf(x))) {
x = parentOf(x); // 情况5
rotateRight(x); // 情况5
}
setColor(parentOf(x), BLACK); // 情况6
setColor(parentOf(parentOf(x)), RED); // 情况6
rotateLeft(parentOf(parentOf(x))); // 情况6
}
}
}
root.color = BLACK;
}
~~~
## [](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/markdown/5-TreeSet%20and%20TreeMap.md#remove)remove()
`remove(Object key)`的作用是删除`key`值对应的`entry`,该方法首先通过上文中提到的`getEntry(Object key)`方法找到`key`值对应的`entry`,然后调用`deleteEntry(Entry<K,V> entry)`删除对应的`entry`。由于删除操作会改变红黑树的结构,有可能破坏红黑树的约束条件,因此有可能要进行调整。
`getEntry()`函数前面已经讲解过,这里重点放`deleteEntry()`上,该函数删除指定的`entry`并在红黑树的约束被破坏时进行调用`fixAfterDeletion(Entry<K,V> x)`进行调整。
**由于红黑树是一棵增强版的二叉查找树,红黑树的删除操作跟普通二叉查找树的删除操作也就非常相似,唯一的区别是红黑树在节点删除之后可能需要进行调整**。现在考虑一棵普通二叉查找树的删除过程,可以简单分为两种情况:
> 1. 删除点p的左右子树都为空,或者只有一棵子树非空。
> 2. 删除点p的左右子树都非空。
对于上述情况1,处理起来比较简单,直接将p删除(左右子树都为空时),或者用非空子树替代p(只有一棵子树非空时);对于情况2,可以用p的后继s(树中大于x的最小的那个元素)代替p,然后使用情况1删除s(此时s一定满足情况1.可以画画看)。
基于以上逻辑,红黑树的节点删除函数`deleteEntry()`代码如下:
~~~java
// 红黑树entry删除函数deleteEntry()
private void deleteEntry(Entry<K,V> p) {
modCount++;
size--;
if (p.left != null && p.right != null) {// 2. 删除点p的左右子树都非空。
Entry<K,V> s = successor(p);// 后继
p.key = s.key;
p.value = s.value;
p = s;
}
Entry<K,V> replacement = (p.left != null ? p.left : p.right);
if (replacement != null) {// 1. 删除点p只有一棵子树非空。
replacement.parent = p.parent;
if (p.parent == null)
root = replacement;
else if (p == p.parent.left)
p.parent.left = replacement;
else
p.parent.right = replacement;
p.left = p.right = p.parent = null;
if (p.color == BLACK)
fixAfterDeletion(replacement);// 调整
} else if (p.parent == null) {
root = null;
} else { // 1. 删除点p的左右子树都为空
if (p.color == BLACK)
fixAfterDeletion(p);// 调整
if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
}
~~~
上述代码中占据大量代码行的,是用来修改父子节点间引用关系的代码,其逻辑并不难理解。下面着重讲解删除后调整函数`fixAfterDeletion()`。首先请思考一下,删除了哪些点才会导致调整?**只有删除点是BLACK的时候,才会触发调整函数**,因为删除RED节点不会破坏红黑树的任何约束,而删除BLACK节点会破坏规则4。
跟上文中讲过的`fixAfterInsertion()`函数一样,这里也要分成若干种情况。记住,**无论有多少情况,具体的调整操作只有两种:1.改变某些节点的颜色,2.对某些节点进行旋转。**
[![TreeMap_fixAfterDeletion.png](https://github.com/CarpenterLee/JCFInternals/raw/049c84bb65a3114ba4b8355d83c490fb9b26c6af/PNGFigures/TreeMap_fixAfterDeletion.png)](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/PNGFigures/TreeMap_fixAfterDeletion.png)
上述图解的总体思想是:将情况1首先转换成情况2,或者转换成情况3和情况4。当然,该图解并不意味着调整过程一定是从情况1开始。通过后续代码我们还会发现几个有趣的规则:a).如果是由情况1之后紧接着进入的情况2,那么情况2之后一定会退出循环(因为x为红色);b).一旦进入情况3和情况4,一定会退出循环(因为x为root)。
删除后调整函数`fixAfterDeletion()`的具体代码如下,其中用到了上文中提到的`rotateLeft()`和`rotateRight()`函数。通过代码我们能够看到,情况3其实是落在情况4内的。情况5~情况8跟前四种情况是对称的,因此图解中并没有画出后四种情况,读者可以参考代码自行理解。
~~~java
private void fixAfterDeletion(Entry<K,V> x) {
while (x != root && colorOf(x) == BLACK) {
if (x == leftOf(parentOf(x))) {
Entry<K,V> sib = rightOf(parentOf(x));
if (colorOf(sib) == RED) {
setColor(sib, BLACK); // 情况1
setColor(parentOf(x), RED); // 情况1
rotateLeft(parentOf(x)); // 情况1
sib = rightOf(parentOf(x)); // 情况1
}
if (colorOf(leftOf(sib)) == BLACK &&
colorOf(rightOf(sib)) == BLACK) {
setColor(sib, RED); // 情况2
x = parentOf(x); // 情况2
} else {
if (colorOf(rightOf(sib)) == BLACK) {
setColor(leftOf(sib), BLACK); // 情况3
setColor(sib, RED); // 情况3
rotateRight(sib); // 情况3
sib = rightOf(parentOf(x)); // 情况3
}
setColor(sib, colorOf(parentOf(x))); // 情况4
setColor(parentOf(x), BLACK); // 情况4
setColor(rightOf(sib), BLACK); // 情况4
rotateLeft(parentOf(x)); // 情况4
x = root; // 情况4
}
} else { // 跟前四种情况对称
Entry<K,V> sib = leftOf(parentOf(x));
if (colorOf(sib) == RED) {
setColor(sib, BLACK); // 情况5
setColor(parentOf(x), RED); // 情况5
rotateRight(parentOf(x)); // 情况5
sib = leftOf(parentOf(x)); // 情况5
}
if (colorOf(rightOf(sib)) == BLACK &&
colorOf(leftOf(sib)) == BLACK) {
setColor(sib, RED); // 情况6
x = parentOf(x); // 情况6
} else {
if (colorOf(leftOf(sib)) == BLACK) {
setColor(rightOf(sib), BLACK); // 情况7
setColor(sib, RED); // 情况7
rotateLeft(sib); // 情况7
sib = leftOf(parentOf(x)); // 情况7
}
setColor(sib, colorOf(parentOf(x))); // 情况8
setColor(parentOf(x), BLACK); // 情况8
setColor(leftOf(sib), BLACK); // 情况8
rotateRight(parentOf(x)); // 情况8
x = root; // 情况8
}
}
}
setColor(x, BLACK);
}
~~~
# [](https://github.com/CarpenterLee/JCFInternals/blob/049c84bb65a3114ba4b8355d83c490fb9b26c6af/markdown/5-TreeSet%20and%20TreeMap.md#treeset)TreeSet
前面已经说过`TreeSet`是对`TreeMap`的简单包装,对`TreeSet`的函数调用都会转换成合适的`TreeMap`方法,因此`TreeSet`的实现非常简单。这里不再赘述。
~~~java
// TreeSet是对TreeMap的简单包装
public class TreeSet<E> extends AbstractSet<E>
implements NavigableSet<E>, Cloneable, java.io.Serializable
{
......
private transient NavigableMap<E,Object> m;
// Dummy value to associate with an Object in the backing Map
private static final Object PRESENT = new Object();
public TreeSet() {
this.m = new TreeMap<E,Object>();// TreeSet里面有一个TreeMap
}
......
public boolean add(E e) {
return m.put(e, PRESENT)==null;
}
......
}
~~~
- 一.JVM
- 1.1 java代码是怎么运行的
- 1.2 JVM的内存区域
- 1.3 JVM运行时内存
- 1.4 JVM内存分配策略
- 1.5 JVM类加载机制与对象的生命周期
- 1.6 常用的垃圾回收算法
- 1.7 JVM垃圾收集器
- 1.8 CMS垃圾收集器
- 1.9 G1垃圾收集器
- 2.面试相关文章
- 2.1 可能是把Java内存区域讲得最清楚的一篇文章
- 2.0 GC调优参数
- 2.1GC排查系列
- 2.2 内存泄漏和内存溢出
- 2.2.3 深入理解JVM-hotspot虚拟机对象探秘
- 1.10 并发的可达性分析相关问题
- 二.Java集合架构
- 1.ArrayList深入源码分析
- 2.Vector深入源码分析
- 3.LinkedList深入源码分析
- 4.HashMap深入源码分析
- 5.ConcurrentHashMap深入源码分析
- 6.HashSet,LinkedHashSet 和 LinkedHashMap
- 7.容器中的设计模式
- 8.集合架构之面试指南
- 9.TreeSet和TreeMap
- 三.Java基础
- 1.基础概念
- 1.1 Java程序初始化的顺序是怎么样的
- 1.2 Java和C++的区别
- 1.3 反射
- 1.4 注解
- 1.5 泛型
- 1.6 字节与字符的区别以及访问修饰符
- 1.7 深拷贝与浅拷贝
- 1.8 字符串常量池
- 2.面向对象
- 3.关键字
- 4.基本数据类型与运算
- 5.字符串与数组
- 6.异常处理
- 7.Object 通用方法
- 8.Java8
- 8.1 Java 8 Tutorial
- 8.2 Java 8 数据流(Stream)
- 8.3 Java 8 并发教程:线程和执行器
- 8.4 Java 8 并发教程:同步和锁
- 8.5 Java 8 并发教程:原子变量和 ConcurrentMap
- 8.6 Java 8 API 示例:字符串、数值、算术和文件
- 8.7 在 Java 8 中避免 Null 检查
- 8.8 使用 Intellij IDEA 解决 Java 8 的数据流问题
- 四.Java 并发编程
- 1.线程的实现/创建
- 2.线程生命周期/状态转换
- 3.线程池
- 4.线程中的协作、中断
- 5.Java锁
- 5.1 乐观锁、悲观锁和自旋锁
- 5.2 Synchronized
- 5.3 ReentrantLock
- 5.4 公平锁和非公平锁
- 5.3.1 说说ReentrantLock的实现原理,以及ReentrantLock的核心源码是如何实现的?
- 5.5 锁优化和升级
- 6.多线程的上下文切换
- 7.死锁的产生和解决
- 8.J.U.C(java.util.concurrent)
- 0.简化版(快速复习用)
- 9.锁优化
- 10.Java 内存模型(JMM)
- 11.ThreadLocal详解
- 12 CAS
- 13.AQS
- 0.ArrayBlockingQueue和LinkedBlockingQueue的实现原理
- 1.DelayQueue的实现原理
- 14.Thread.join()实现原理
- 15.PriorityQueue 的特性和原理
- 16.CyclicBarrier的实际使用场景
- 五.Java I/O NIO
- 1.I/O模型简述
- 2.Java NIO之缓冲区
- 3.JAVA NIO之文件通道
- 4.Java NIO之套接字通道
- 5.Java NIO之选择器
- 6.基于 Java NIO 实现简单的 HTTP 服务器
- 7.BIO-NIO-AIO
- 8.netty(一)
- 9.NIO面试题
- 六.Java设计模式
- 1.单例模式
- 2.策略模式
- 3.模板方法
- 4.适配器模式
- 5.简单工厂
- 6.门面模式
- 7.代理模式
- 七.数据结构和算法
- 1.什么是红黑树
- 2.二叉树
- 2.1 二叉树的前序、中序、后序遍历
- 3.排序算法汇总
- 4.java实现链表及链表的重用操作
- 4.1算法题-链表反转
- 5.图的概述
- 6.常见的几道字符串算法题
- 7.几道常见的链表算法题
- 8.leetcode常见算法题1
- 9.LRU缓存策略
- 10.二进制及位运算
- 10.1.二进制和十进制转换
- 10.2.位运算
- 11.常见链表算法题
- 12.算法好文推荐
- 13.跳表
- 八.Spring 全家桶
- 1.Spring IOC
- 2.Spring AOP
- 3.Spring 事务管理
- 4.SpringMVC 运行流程和手动实现
- 0.Spring 核心技术
- 5.spring如何解决循环依赖问题
- 6.springboot自动装配原理
- 7.Spring中的循环依赖解决机制中,为什么要三级缓存,用二级缓存不够吗
- 8.beanFactory和factoryBean有什么区别
- 九.数据库
- 1.mybatis
- 1.1 MyBatis-# 与 $ 区别以及 sql 预编译
- Mybatis系列1-Configuration
- Mybatis系列2-SQL执行过程
- Mybatis系列3-之SqlSession
- Mybatis系列4-之Executor
- Mybatis系列5-StatementHandler
- Mybatis系列6-MappedStatement
- Mybatis系列7-参数设置揭秘(ParameterHandler)
- Mybatis系列8-缓存机制
- 2.浅谈聚簇索引和非聚簇索引的区别
- 3.mysql 证明为什么用limit时,offset很大会影响性能
- 4.MySQL中的索引
- 5.数据库索引2
- 6.面试题收集
- 7.MySQL行锁、表锁、间隙锁详解
- 8.数据库MVCC详解
- 9.一条SQL查询语句是如何执行的
- 10.MySQL 的 crash-safe 原理解析
- 11.MySQL 性能优化神器 Explain 使用分析
- 12.mysql中,一条update语句执行的过程是怎么样的?期间用到了mysql的哪些log,分别有什么作用
- 十.Redis
- 0.快速复习回顾Redis
- 1.通俗易懂的Redis数据结构基础教程
- 2.分布式锁(一)
- 3.分布式锁(二)
- 4.延时队列
- 5.位图Bitmaps
- 6.Bitmaps(位图)的使用
- 7.Scan
- 8.redis缓存雪崩、缓存击穿、缓存穿透
- 9.Redis为什么是单线程、及高并发快的3大原因详解
- 10.布隆过滤器你值得拥有的开发利器
- 11.Redis哨兵、复制、集群的设计原理与区别
- 12.redis的IO多路复用
- 13.相关redis面试题
- 14.redis集群
- 十一.中间件
- 1.RabbitMQ
- 1.1 RabbitMQ实战,hello world
- 1.2 RabbitMQ 实战,工作队列
- 1.3 RabbitMQ 实战, 发布订阅
- 1.4 RabbitMQ 实战,路由
- 1.5 RabbitMQ 实战,主题
- 1.6 Spring AMQP 的 AMQP 抽象
- 1.7 Spring AMQP 实战 – 整合 RabbitMQ 发送邮件
- 1.8 RabbitMQ 的消息持久化与 Spring AMQP 的实现剖析
- 1.9 RabbitMQ必备核心知识
- 2.RocketMQ 的几个简单问题与答案
- 2.Kafka
- 2.1 kafka 基础概念和术语
- 2.2 Kafka的重平衡(Rebalance)
- 2.3.kafka日志机制
- 2.4 kafka是pull还是push的方式传递消息的?
- 2.5 Kafka的数据处理流程
- 2.6 Kafka的脑裂预防和处理机制
- 2.7 Kafka中partition副本的Leader选举机制
- 2.8 如果Leader挂了的时候,follower没来得及同步,是否会出现数据不一致
- 2.9 kafka的partition副本是否会出现脑裂情况
- 十二.Zookeeper
- 0.什么是Zookeeper(漫画)
- 1.使用docker安装Zookeeper伪集群
- 3.ZooKeeper-Plus
- 4.zk实现分布式锁
- 5.ZooKeeper之Watcher机制
- 6.Zookeeper之选举及数据一致性
- 十三.计算机网络
- 1.进制转换:二进制、八进制、十六进制、十进制之间的转换
- 2.位运算
- 3.计算机网络面试题汇总1
- 十四.Docker
- 100.面试题收集合集
- 1.美团面试常见问题总结
- 2.b站部分面试题
- 3.比心面试题
- 4.腾讯面试题
- 5.哈罗部分面试
- 6.笔记
- 十五.Storm
- 1.Storm和流处理简介
- 2.Storm 核心概念详解
- 3.Storm 单机版本环境搭建
- 4.Storm 集群环境搭建
- 5.Storm 编程模型详解
- 6.Storm 项目三种打包方式对比分析
- 7.Storm 集成 Redis 详解
- 8.Storm 集成 HDFS 和 HBase
- 9.Storm 集成 Kafka
- 十六.Elasticsearch
- 1.初识ElasticSearch
- 2.文档基本CRUD、集群健康检查
- 3.shard&replica
- 4.document核心元数据解析及ES的并发控制
- 5.document的批量操作及数据路由原理
- 6.倒排索引
- 十七.分布式相关
- 1.分布式事务解决方案一网打尽
- 2.关于xxx怎么保证高可用的问题
- 3.一致性hash原理与实现
- 4.微服务注册中心 Nacos 比 Eureka的优势
- 5.Raft 协议算法
- 6.为什么微服务架构中需要网关
- 0.CAP与BASE理论
- 十八.Dubbo
- 1.快速掌握Dubbo常规应用
- 2.Dubbo应用进阶
- 3.Dubbo调用模块详解
- 4.Dubbo调用模块源码分析
- 6.Dubbo协议模块