## 主题交换(Topic exchange)
使用 topic 类型的交换器,不能有任意的绑定键,它必须是由点隔开的一系列的标识符组成。标识符可以是任何东西,但通常它们指定与消息相关联的一些功能。其中,有几个有效的绑定键,例如 “stock.usd.nyse”, “nyse.vmw”, “quick.orange.rabbit”。可以有任何数量的标识符,最多可达 255 个字节。
topic 类型的交换器和 direct 类型的交换器很类似,一个特定路由的消息将被传递到与匹配的绑定键绑定的匹配的所有队列。关于绑定键有两种有两个重要的特殊情况:
~~~null
* 可以匹配一个标识符。
# 可以匹配零个或多个标识符。
~~~
[![](https://gitee.com/chenssy/blog-home/raw/master/image/201810/rabbitmq_python-five.png)](https://gitee.com/chenssy/blog-home/raw/master/image/201810/rabbitmq_python-five.png)
在这个例子中,我们将发送所有描述动物的消息。消息将使用由三个字(两个点)组成的绑定键发送。绑定键中的第一个字将描述速度,第二个颜色和第三个种类:“..”。其中, Q1 对所有的橙色动物感兴趣。而 Q2 想听听有关兔子的一切,以及关于懒惰动物的一切。
如果我们违反合同并发送一个或四个字的消息,如 “quick.orange.male.rabbit” 会发生什么?那么,这些消息将不会匹配任何绑定,并将被丢失。
topic 类型的交换器是强大的,可以实现其他类型的交换器。
当一个队列与“#”绑定绑定键时,它将接收所有消息,类似 fanout 类型的交换器。
当一个队列与`“*”`和`“#”`在绑定中不被使用时,类似 direct 类型的交换器。
## 案例实战
### 发送端
发送端,连接到 RabbitMQ,发送一条数据,然后退出。
~~~java
public class EmitLogTopic {
private static final String EXCHANGE_NAME = "topic_logs";
private static final String[] LOG_LEVEL_ARR = {"dao.debug", "dao.info", "dao.error",
"service.debug", "service.info", "service.error",
"controller.debug", "controller.info", "controller.error"};
public static void main(String[] args) throws IOException, TimeoutException {
// 创建连接
ConnectionFactory factory = new ConnectionFactory();
// 设置 RabbitMQ 的主机名
factory.setHost("localhost");
// 创建一个连接
Connection connection = factory.newConnection();
// 创建一个通道
Channel channel = connection.createChannel();
// 指定一个交换器
channel.exchangeDeclare(EXCHANGE_NAME, "topic");
// 发送消息
for (String severity : LOG_LEVEL_ARR) {
String message = "Liang-MSG log : [" +severity+ "]" + UUID.randomUUID().toString();
// 发布消息至交换器
channel.basicPublish(EXCHANGE_NAME, severity, null, message.getBytes());
System.out.println(" [x] Sent '" + message + "'");
}
// 关闭频道和连接
channel.close();
connection.close();
}
}
~~~
### 接受端
接受端,不断等待服务器推送消息,然后在控制台输出。
~~~java
public class ReceiveLogsTopic {
private static final String EXCHANGE_NAME = "topic_logs";
private static final String[] LOG_LEVEL_ARR = {"#", "dao.error", "*.error", "dao.*", "service.#", "*.controller.#"};
public static void main(String[] args) throws IOException, TimeoutException {
// 创建连接
ConnectionFactory factory = new ConnectionFactory();
// 设置 RabbitMQ 的主机名
factory.setHost("localhost");
// 创建一个连接
Connection connection = factory.newConnection();
// 创建一个通道
Channel channel = connection.createChannel();
// 指定一个交换器
channel.exchangeDeclare(EXCHANGE_NAME, "topic");
// 设置日志级别
int rand = new Random().nextInt(5);
String severity = LOG_LEVEL_ARR[rand];
// 创建一个非持久的、唯一的、自动删除的队列
String queueName = channel.queueDeclare().getQueue();
// 绑定交换器和队列
channel.queueBind(queueName, EXCHANGE_NAME, severity);
// 打印
System.out.println(" [*] LOG INFO : " + severity);
// 创建队列消费者
final Consumer consumer = new DefaultConsumer(channel) {
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties,
byte[] body) throws IOException {
String message = new String(body, "UTF-8");
System.out.println(" [x] Received '" + message + "'");
}
};
channel.basicConsume(queueName, true, consumer);
}
}
~~~
现在,做一个实验,我们开启三个 ReceiveLogsTopic 工作程序:ReceiveLogsTopic1、 ReceiveLogsTopic2 与 ReceiveLogsTopic3。
ReceiveLogsTopic1
~~~null
[*] LOG INFO : dao.error
[x] Received 'Liang-MSG log : [dao.error]041cd8ba-df7d-4d20-a11f-ba21a0c2a02a'
~~~
ReceiveLogsTopic2
~~~null
[*] LOG INFO : *.error
[x] Received 'Liang-MSG log : [dao.error]041cd8ba-df7d-4d20-a11f-ba21a0c2a02a'
[x] Received 'Liang-MSG log : [service.error]e3565f12-9782-4c22-a91c-f513f31b037d'
[x] Received 'Liang-MSG log : [controller.error]4436101a-3346-41f6-a9af-b8a4fbda451e'
~~~
ReceiveLogsTopic3
~~~null
[*] LOG INFO : #
[x] Received 'Liang-MSG log : [dao.debug]4eb08245-2c05-490b-a5a5-2742cb70d831'
[x] Received 'Liang-MSG log : [dao.info]e9d4073b-1e61-4c6f-b531-ac42eaa346af'
[x] Received 'Liang-MSG log : [dao.error]041cd8ba-df7d-4d20-a11f-ba21a0c2a02a'
[x] Received 'Liang-MSG log : [service.debug]0ec84cbf-47ab-4813-a5db-e57d5e78830e'
[x] Received 'Liang-MSG log : [service.info]2e12e1b7-7a09-4eb7-8ad1-8e53f533121c'
[x] Received 'Liang-MSG log : [service.error]e3565f12-9782-4c22-a91c-f513f31b037d'
[x] Received 'Liang-MSG log : [controller.debug]94e5be72-15f6-496d-84f3-2a107bafc92b'
[x] Received 'Liang-MSG log : [controller.info]62bbe378-617d-4214-beb4-98cc53e73272'
[x] Received 'Liang-MSG log : [controller.error]4436101a-3346-41f6-a9af-b8a4fbda451e'
~~~
此时,ReceiveLogsTopic1 、ReceiveLogsTopic2 与 ReceiveLogsTopic3 同时收到了属于自己级别的消息。
我们发现,ReceiveLogsTopic1、ReceiveLogsTopic2、ReceiveLogsTopic3、ReceiveLogsTopic4同时收到了属于自己匹配的消息。尤其是ReceiveLogsTopic1 类似于 direct 类型的交换器,ReceiveLogsTopic3 类似于 fanout 类型的交换器。
## 源代码
> 相关示例完整代码:[https://github.com/lianggzone/rabbitmq-action](https://github.com/lianggzone/rabbitmq-action)
- 一.JVM
- 1.1 java代码是怎么运行的
- 1.2 JVM的内存区域
- 1.3 JVM运行时内存
- 1.4 JVM内存分配策略
- 1.5 JVM类加载机制与对象的生命周期
- 1.6 常用的垃圾回收算法
- 1.7 JVM垃圾收集器
- 1.8 CMS垃圾收集器
- 1.9 G1垃圾收集器
- 2.面试相关文章
- 2.1 可能是把Java内存区域讲得最清楚的一篇文章
- 2.0 GC调优参数
- 2.1GC排查系列
- 2.2 内存泄漏和内存溢出
- 2.2.3 深入理解JVM-hotspot虚拟机对象探秘
- 1.10 并发的可达性分析相关问题
- 二.Java集合架构
- 1.ArrayList深入源码分析
- 2.Vector深入源码分析
- 3.LinkedList深入源码分析
- 4.HashMap深入源码分析
- 5.ConcurrentHashMap深入源码分析
- 6.HashSet,LinkedHashSet 和 LinkedHashMap
- 7.容器中的设计模式
- 8.集合架构之面试指南
- 9.TreeSet和TreeMap
- 三.Java基础
- 1.基础概念
- 1.1 Java程序初始化的顺序是怎么样的
- 1.2 Java和C++的区别
- 1.3 反射
- 1.4 注解
- 1.5 泛型
- 1.6 字节与字符的区别以及访问修饰符
- 1.7 深拷贝与浅拷贝
- 1.8 字符串常量池
- 2.面向对象
- 3.关键字
- 4.基本数据类型与运算
- 5.字符串与数组
- 6.异常处理
- 7.Object 通用方法
- 8.Java8
- 8.1 Java 8 Tutorial
- 8.2 Java 8 数据流(Stream)
- 8.3 Java 8 并发教程:线程和执行器
- 8.4 Java 8 并发教程:同步和锁
- 8.5 Java 8 并发教程:原子变量和 ConcurrentMap
- 8.6 Java 8 API 示例:字符串、数值、算术和文件
- 8.7 在 Java 8 中避免 Null 检查
- 8.8 使用 Intellij IDEA 解决 Java 8 的数据流问题
- 四.Java 并发编程
- 1.线程的实现/创建
- 2.线程生命周期/状态转换
- 3.线程池
- 4.线程中的协作、中断
- 5.Java锁
- 5.1 乐观锁、悲观锁和自旋锁
- 5.2 Synchronized
- 5.3 ReentrantLock
- 5.4 公平锁和非公平锁
- 5.3.1 说说ReentrantLock的实现原理,以及ReentrantLock的核心源码是如何实现的?
- 5.5 锁优化和升级
- 6.多线程的上下文切换
- 7.死锁的产生和解决
- 8.J.U.C(java.util.concurrent)
- 0.简化版(快速复习用)
- 9.锁优化
- 10.Java 内存模型(JMM)
- 11.ThreadLocal详解
- 12 CAS
- 13.AQS
- 0.ArrayBlockingQueue和LinkedBlockingQueue的实现原理
- 1.DelayQueue的实现原理
- 14.Thread.join()实现原理
- 15.PriorityQueue 的特性和原理
- 16.CyclicBarrier的实际使用场景
- 五.Java I/O NIO
- 1.I/O模型简述
- 2.Java NIO之缓冲区
- 3.JAVA NIO之文件通道
- 4.Java NIO之套接字通道
- 5.Java NIO之选择器
- 6.基于 Java NIO 实现简单的 HTTP 服务器
- 7.BIO-NIO-AIO
- 8.netty(一)
- 9.NIO面试题
- 六.Java设计模式
- 1.单例模式
- 2.策略模式
- 3.模板方法
- 4.适配器模式
- 5.简单工厂
- 6.门面模式
- 7.代理模式
- 七.数据结构和算法
- 1.什么是红黑树
- 2.二叉树
- 2.1 二叉树的前序、中序、后序遍历
- 3.排序算法汇总
- 4.java实现链表及链表的重用操作
- 4.1算法题-链表反转
- 5.图的概述
- 6.常见的几道字符串算法题
- 7.几道常见的链表算法题
- 8.leetcode常见算法题1
- 9.LRU缓存策略
- 10.二进制及位运算
- 10.1.二进制和十进制转换
- 10.2.位运算
- 11.常见链表算法题
- 12.算法好文推荐
- 13.跳表
- 八.Spring 全家桶
- 1.Spring IOC
- 2.Spring AOP
- 3.Spring 事务管理
- 4.SpringMVC 运行流程和手动实现
- 0.Spring 核心技术
- 5.spring如何解决循环依赖问题
- 6.springboot自动装配原理
- 7.Spring中的循环依赖解决机制中,为什么要三级缓存,用二级缓存不够吗
- 8.beanFactory和factoryBean有什么区别
- 九.数据库
- 1.mybatis
- 1.1 MyBatis-# 与 $ 区别以及 sql 预编译
- Mybatis系列1-Configuration
- Mybatis系列2-SQL执行过程
- Mybatis系列3-之SqlSession
- Mybatis系列4-之Executor
- Mybatis系列5-StatementHandler
- Mybatis系列6-MappedStatement
- Mybatis系列7-参数设置揭秘(ParameterHandler)
- Mybatis系列8-缓存机制
- 2.浅谈聚簇索引和非聚簇索引的区别
- 3.mysql 证明为什么用limit时,offset很大会影响性能
- 4.MySQL中的索引
- 5.数据库索引2
- 6.面试题收集
- 7.MySQL行锁、表锁、间隙锁详解
- 8.数据库MVCC详解
- 9.一条SQL查询语句是如何执行的
- 10.MySQL 的 crash-safe 原理解析
- 11.MySQL 性能优化神器 Explain 使用分析
- 12.mysql中,一条update语句执行的过程是怎么样的?期间用到了mysql的哪些log,分别有什么作用
- 十.Redis
- 0.快速复习回顾Redis
- 1.通俗易懂的Redis数据结构基础教程
- 2.分布式锁(一)
- 3.分布式锁(二)
- 4.延时队列
- 5.位图Bitmaps
- 6.Bitmaps(位图)的使用
- 7.Scan
- 8.redis缓存雪崩、缓存击穿、缓存穿透
- 9.Redis为什么是单线程、及高并发快的3大原因详解
- 10.布隆过滤器你值得拥有的开发利器
- 11.Redis哨兵、复制、集群的设计原理与区别
- 12.redis的IO多路复用
- 13.相关redis面试题
- 14.redis集群
- 十一.中间件
- 1.RabbitMQ
- 1.1 RabbitMQ实战,hello world
- 1.2 RabbitMQ 实战,工作队列
- 1.3 RabbitMQ 实战, 发布订阅
- 1.4 RabbitMQ 实战,路由
- 1.5 RabbitMQ 实战,主题
- 1.6 Spring AMQP 的 AMQP 抽象
- 1.7 Spring AMQP 实战 – 整合 RabbitMQ 发送邮件
- 1.8 RabbitMQ 的消息持久化与 Spring AMQP 的实现剖析
- 1.9 RabbitMQ必备核心知识
- 2.RocketMQ 的几个简单问题与答案
- 2.Kafka
- 2.1 kafka 基础概念和术语
- 2.2 Kafka的重平衡(Rebalance)
- 2.3.kafka日志机制
- 2.4 kafka是pull还是push的方式传递消息的?
- 2.5 Kafka的数据处理流程
- 2.6 Kafka的脑裂预防和处理机制
- 2.7 Kafka中partition副本的Leader选举机制
- 2.8 如果Leader挂了的时候,follower没来得及同步,是否会出现数据不一致
- 2.9 kafka的partition副本是否会出现脑裂情况
- 十二.Zookeeper
- 0.什么是Zookeeper(漫画)
- 1.使用docker安装Zookeeper伪集群
- 3.ZooKeeper-Plus
- 4.zk实现分布式锁
- 5.ZooKeeper之Watcher机制
- 6.Zookeeper之选举及数据一致性
- 十三.计算机网络
- 1.进制转换:二进制、八进制、十六进制、十进制之间的转换
- 2.位运算
- 3.计算机网络面试题汇总1
- 十四.Docker
- 100.面试题收集合集
- 1.美团面试常见问题总结
- 2.b站部分面试题
- 3.比心面试题
- 4.腾讯面试题
- 5.哈罗部分面试
- 6.笔记
- 十五.Storm
- 1.Storm和流处理简介
- 2.Storm 核心概念详解
- 3.Storm 单机版本环境搭建
- 4.Storm 集群环境搭建
- 5.Storm 编程模型详解
- 6.Storm 项目三种打包方式对比分析
- 7.Storm 集成 Redis 详解
- 8.Storm 集成 HDFS 和 HBase
- 9.Storm 集成 Kafka
- 十六.Elasticsearch
- 1.初识ElasticSearch
- 2.文档基本CRUD、集群健康检查
- 3.shard&replica
- 4.document核心元数据解析及ES的并发控制
- 5.document的批量操作及数据路由原理
- 6.倒排索引
- 十七.分布式相关
- 1.分布式事务解决方案一网打尽
- 2.关于xxx怎么保证高可用的问题
- 3.一致性hash原理与实现
- 4.微服务注册中心 Nacos 比 Eureka的优势
- 5.Raft 协议算法
- 6.为什么微服务架构中需要网关
- 0.CAP与BASE理论
- 十八.Dubbo
- 1.快速掌握Dubbo常规应用
- 2.Dubbo应用进阶
- 3.Dubbo调用模块详解
- 4.Dubbo调用模块源码分析
- 6.Dubbo协议模块