## 一、 document数据格式
### 面向文档的搜索分析引擎:
1. 应用系统的数据结构都是面向对象的,复杂的
2. 对象数据存储到数据库中,只能拆解开来,变为扁平的多张表,每次查询的时候还得还原回对象格式,相当麻烦
3. ES是面向文档的,文档中存储的数据结构,与面向对象的数据结构是一样的,基于这种文档数据结构,es可以提供复杂的索引,全文检索,分析聚合等功能
4. es的document用json数据格式来表达
~~~
public class Employee {
private String email;
private String firstName;
private String lastName;
private EmployeeInfo info;
private Date joinDate;
}
private class EmployeeInfo {
private String bio; // 性格
private Integer age;
private String[] interests; // 兴趣爱好
}
EmployeeInfo info = new EmployeeInfo();
info.setBio("curious and modest");
info.setAge(30);
info.setInterests(new String[]{"bike", "climb"});
Employee employee = new Employee();
employee.setEmail("zhangsan@sina.com");
employee.setFirstName("san");
employee.setLastName("zhang");
employee.setInfo(info);
employee.setJoinDate(new Date());
employee对象:里面包含了Employee类自己的属性,还有一个EmployeeInfo对象
两张表:employee表,employee_info表,将employee对象的数据重新拆开来,变成Employee数据和EmployeeInfo数据
employee表:email,first_name,last_name,join_date,4个字段
employee_info表:bio,age,interests,3个字段;此外还有一个外键字段,比如employee_id,关联着employee表
{
"email": "zhangsan@sina.com",
"first_name": "san",
"last_name": "zhang",
"info": {
"bio": "curious and modest",
"age": 30,
"interests": [ "bike", "climb" ]
},
"join_date": "2020/12/01"
}
我们就明白了es的document数据格式和数据库的关系型数据格式的区别
复制代码
~~~
## 二、简单的集群管理
### 1、快速检查集群的健康状况
~~~
es提供了一套api,叫做cat api,可以查看es中各种各样的数据
GET /_cat/health?v
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1488006741 15:12:21 elasticsearch yellow 1 1 1 1 0 0 1 0 - 50.0%
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1488007113 15:18:33 elasticsearch green 2 2 2 1 0 0 0 0 - 100.0%
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1488007216 15:20:16 elasticsearch yellow 1 1 1 1 0 0 1 0 - 50.0%
复制代码
~~~
### 2、集群的健康状况?green、yellow、red?
1. **green**:每个索引的primary shard和replica shard都是active状态的
2. **yellow**:每个索引的primary shard都是active状态的,但是部分replica shard不是active状态,处于不可用的状态
3. **red**:不是所有索引的primary shard都是active状态的,部分索引有数据丢失了
### 3、快速查看集群中有哪些索引?
~~~
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open .kibana rUm9n9wMRQCCrRDEhqneBg 1 1 1 0 3.1kb 3.1kb
复制代码
~~~
### 4、 简单的索引操作
~~~
创建索引:PUT /test_index?pretty
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open test_index XmS9DTAtSkSZSwWhhGEKkQ 5 1 0 0 650b 650b
yellow open .kibana rUm9n9wMRQCCrRDEhqneBg 1 1 1 0 3.1kb 3.1kb
删除索引:DELETE /test_index?pretty
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open .kibana rUm9n9wMRQCCrRDEhqneBg 1 1 1 0 3.1kb 3.1kb
复制代码
~~~
## 三、面向document的CRUD
### 1、新增商品:新增文档,建立索引
~~~
PUT /index/type/id
{
"json数据"
}
PUT /ecommerce/product/1
{
"name" : "gaolujie yagao",
"desc" : "gaoxiao meibai",
"price" : 30,
"producer" : "gaolujie producer",
"tags": [ "meibai", "fangzhu" ]
}
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"created": true
}
PUT /ecommerce/product/2
{
"name" : "jiajieshi yagao",
"desc" : "youxiao fangzhu",
"price" : 25,
"producer" : "jiajieshi producer",
"tags": [ "fangzhu" ]
}
PUT /ecommerce/product/3
{
"name" : "zhonghua yagao",
"desc" : "caoben zhiwu",
"price" : 40,
"producer" : "zhonghua producer",
"tags": [ "qingxin" ]
}
es会自动建立index和type,不需要提前创建,而且es默认会对document每个field都建立倒排索引,让其可以被搜索
复制代码
~~~
### 2、查询商品:检索文档
~~~
GET /index/type/id
GET /ecommerce/product/1
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_version": 1,
"found": true,
"_source": {
"name": "gaolujie yagao",
"desc": "gaoxiao meibai",
"price": 30,
"producer": "gaolujie producer",
"tags": [
"meibai",
"fangzhu"
]
}
}
复制代码
~~~
### 3、 修改商品:替换文档
~~~
PUT /ecommerce/product/1
{
"name" : "jiaqiangban gaolujie yagao",
"desc" : "gaoxiao meibai",
"price" : 30,
"producer" : "gaolujie producer",
"tags": [ "meibai", "fangzhu" ]
}
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"created": true
}
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_version": 2,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"created": false
}
PUT /ecommerce/product/1
{
"name" : "jiaqiangban gaolujie yagao"
}
替换方式有一个不好,即使必须带上所有的field,才能去进行信息的修改
复制代码
~~~
### 4、修改商品:更新文档
~~~
POST /ecommerce/product/1/_update
{
"doc": {
"name": "jiaqiangban gaolujie yagao"
}
}
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_version": 8,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
}
}
复制代码
~~~
### 5、 删除商品:删除文档
~~~
DELETE /ecommerce/product/1
{
"found": true,
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_version": 9,
"result": "deleted",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
}
}
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"found": false
}
复制代码
~~~
## 四、多种搜索方式
### 1、query string search
~~~
搜索全部商品:GET /ecommerce/product/_search
took:耗费了几毫秒
timed_out:是否超时,这里是没有
_shards:数据拆成了5个分片,所以对于搜索请求,会打到所有的primary shard(或者是它的某个replica shard也可以)
hits.total:查询结果的数量,3个document
hits.max_score:score的含义,就是document对于一个search的相关度的匹配分数,越相关,就越匹配,分数也高
hits.hits:包含了匹配搜索的document的详细数据
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 3,
"max_score": 1,
"hits": [
{
"_index": "ecommerce",
"_type": "product",
"_id": "2",
"_score": 1,
"_source": {
"name": "jiajieshi yagao",
"desc": "youxiao fangzhu",
"price": 25,
"producer": "jiajieshi producer",
"tags": [
"fangzhu"
]
}
},
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_score": 1,
"_source": {
"name": "gaolujie yagao",
"desc": "gaoxiao meibai",
"price": 30,
"producer": "gaolujie producer",
"tags": [
"meibai",
"fangzhu"
]
}
},
{
"_index": "ecommerce",
"_type": "product",
"_id": "3",
"_score": 1,
"_source": {
"name": "zhonghua yagao",
"desc": "caoben zhiwu",
"price": 40,
"producer": "zhonghua producer",
"tags": [
"qingxin"
]
}
}
]
}
}
query string search的由来,因为search参数都是以http请求的query string来附带的
搜索商品名称中包含yagao的商品,而且按照售价降序排序:GET /ecommerce/product/_search?q=name:yagao&sort=price:desc
适用于临时的在命令行使用一些工具,比如curl,快速的发出请求,来检索想要的信息;但是如果查询请求很复杂,是很难去构建的
在生产环境中,几乎很少使用query string search
复制代码
~~~
### 2、query DSL
~~~
DSL:Domain Specified Language,特定领域的语言
http request body:请求体,可以用json的格式来构建查询语法,比较方便,可以构建各种复杂的语法,比query string search肯定强大多了
查询所有的商品
GET /ecommerce/product/_search
{
"query": { "match_all": {} }
}
查询名称包含yagao的商品,同时按照价格降序排序
GET /ecommerce/product/_search
{
"query" : {
"match" : {
"name" : "yagao"
}
},
"sort": [
{ "price": "desc" }
]
}
分页查询商品,总共3条商品,假设每页就显示1条商品,现在显示第2页,所以就查出来第2个商品
GET /ecommerce/product/_search
{
"query": { "match_all": {} },
"from": 1,
"size": 1
}
指定要查询出来商品的名称和价格就可以
GET /ecommerce/product/_search
{
"query": { "match_all": {} },
"_source": ["name", "price"]
}
更加适合生产环境的使用,可以构建复杂的查询
复制代码
~~~
### 3、query filter
~~~
搜索商品名称包含yagao,而且售价大于25元的商品
GET /ecommerce/product/_search
{
"query" : {
"bool" : {
"must" : {
"match" : {
"name" : "yagao"
}
},
"filter" : {
"range" : {
"price" : { "gt" : 25 }
}
}
}
}
}
复制代码
~~~
### 4、full-text search(全文检索)
~~~
GET /ecommerce/product/_search
{
"query" : {
"match" : {
"producer" : "yagao producer"
}
}
}
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 4,
"max_score": 0.70293105,
"hits": [
{
"_index": "ecommerce",
"_type": "product",
"_id": "4",
"_score": 0.70293105,
"_source": {
"name": "special yagao",
"desc": "special meibai",
"price": 50,
"producer": "special yagao producer",
"tags": [
"meibai"
]
}
},
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_score": 0.25811607,
"_source": {
"name": "gaolujie yagao",
"desc": "gaoxiao meibai",
"price": 30,
"producer": "gaolujie producer",
"tags": [
"meibai",
"fangzhu"
]
}
},
{
"_index": "ecommerce",
"_type": "product",
"_id": "3",
"_score": 0.25811607,
"_source": {
"name": "zhonghua yagao",
"desc": "caoben zhiwu",
"price": 40,
"producer": "zhonghua producer",
"tags": [
"qingxin"
]
}
},
{
"_index": "ecommerce",
"_type": "product",
"_id": "2",
"_score": 0.1805489,
"_source": {
"name": "jiajieshi yagao",
"desc": "youxiao fangzhu",
"price": 25,
"producer": "jiajieshi producer",
"tags": [
"fangzhu"
]
}
}
]
}
}
复制代码
~~~
### 5、phrase search(短语搜索)
~~~
跟全文检索相对应,相反,全文检索会将输入的搜索串拆解开来,去倒排索引里面去一一匹配,只要能匹配上任意一个拆解后的单词,就可以作为结果返回
phrase search,要求输入的搜索串,必须在指定的字段文本中,完全包含一模一样的,才可以算匹配,才能作为结果返回
GET /ecommerce/product/_search
{
"query" : {
"match_phrase" : {
"producer" : "yagao producer"
}
}
}
{
"took": 11,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.70293105,
"hits": [
{
"_index": "ecommerce",
"_type": "product",
"_id": "4",
"_score": 0.70293105,
"_source": {
"name": "special yagao",
"desc": "special meibai",
"price": 50,
"producer": "special yagao producer",
"tags": [
"meibai"
]
}
}
]
}
}
复制代码
~~~
### 6、highlight search(高亮搜索结果)
~~~
GET /ecommerce/product/_search
{
"query" : {
"match" : {
"producer" : "producer"
}
},
"highlight": {
"fields" : {
"producer" : {}
}
}
}
复制代码
~~~
## 五、聚合分析
### 1、计算每个tag下的商品数量
~~~
GET /ecommerce/product/_search
{
"size": 0,
"aggs": {
"all_tags": {
"terms": { "field": "tags" }
}
}
}
{
"took": 20,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 4,
"max_score": 0,
"hits": []
},
"aggregations": {
"group_by_tags": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "fangzhu",
"doc_count": 2
},
{
"key": "meibai",
"doc_count": 2
},
{
"key": "qingxin",
"doc_count": 1
}
]
}
}
}
复制代码
~~~
### 3、对名称中包含yagao的商品,计算每个tag下的商品数量
~~~
GET /ecommerce/product/_search
{
"size": 0,
"query": {
"match": {
"name": "yagao"
}
},
"aggs": {
"all_tags": {
"terms": {
"field": "tags"
}
}
}
}
复制代码
~~~
### 4、先分组,再算每组的平均值,计算每个tag下的商品的平均价格
~~~
GET /ecommerce/product/_search
{
"size": 0,
"aggs" : {
"group_by_tags" : {
"terms" : { "field" : "tags" },
"aggs" : {
"avg_price" : {
"avg" : { "field" : "price" }
}
}
}
}
}
{
"took": 8,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 4,
"max_score": 0,
"hits": []
},
"aggregations": {
"group_by_tags": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "fangzhu",
"doc_count": 2,
"avg_price": {
"value": 27.5
}
},
{
"key": "meibai",
"doc_count": 2,
"avg_price": {
"value": 40
}
},
{
"key": "qingxin",
"doc_count": 1,
"avg_price": {
"value": 40
}
}
]
}
}
}
复制代码
~~~
### 5、计算每个tag下的商品的平均价格,并且按照平均价格降序排序
~~~
GET /ecommerce/product/_search
{
"size": 0,
"aggs" : {
"all_tags" : {
"terms" : { "field" : "tags", "order": { "avg_price": "desc" } },
"aggs" : {
"avg_price" : {
"avg" : { "field" : "price" }
}
}
}
}
}
复制代码
~~~
### 6、按照指定的价格范围区间进行分组,然后在每组内再按照tag进行分组,最后再计算每组的平均价格
~~~
GET /ecommerce/product/_search
{
"size": 0,
"aggs": {
"group_by_price": {
"range": {
"field": "price",
"ranges": [
{
"from": 0,
"to": 20
},
{
"from": 20,
"to": 40
},
{
"from": 40,
"to": 50
}
]
},
"aggs": {
"group_by_tags": {
"terms": {
"field": "tags"
},
"aggs": {
"average_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
}
}
~~~
作者:Leo\_CX330
链接:https://juejin.cn/post/6908348672308838408
来源:掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
- 一.JVM
- 1.1 java代码是怎么运行的
- 1.2 JVM的内存区域
- 1.3 JVM运行时内存
- 1.4 JVM内存分配策略
- 1.5 JVM类加载机制与对象的生命周期
- 1.6 常用的垃圾回收算法
- 1.7 JVM垃圾收集器
- 1.8 CMS垃圾收集器
- 1.9 G1垃圾收集器
- 2.面试相关文章
- 2.1 可能是把Java内存区域讲得最清楚的一篇文章
- 2.0 GC调优参数
- 2.1GC排查系列
- 2.2 内存泄漏和内存溢出
- 2.2.3 深入理解JVM-hotspot虚拟机对象探秘
- 1.10 并发的可达性分析相关问题
- 二.Java集合架构
- 1.ArrayList深入源码分析
- 2.Vector深入源码分析
- 3.LinkedList深入源码分析
- 4.HashMap深入源码分析
- 5.ConcurrentHashMap深入源码分析
- 6.HashSet,LinkedHashSet 和 LinkedHashMap
- 7.容器中的设计模式
- 8.集合架构之面试指南
- 9.TreeSet和TreeMap
- 三.Java基础
- 1.基础概念
- 1.1 Java程序初始化的顺序是怎么样的
- 1.2 Java和C++的区别
- 1.3 反射
- 1.4 注解
- 1.5 泛型
- 1.6 字节与字符的区别以及访问修饰符
- 1.7 深拷贝与浅拷贝
- 1.8 字符串常量池
- 2.面向对象
- 3.关键字
- 4.基本数据类型与运算
- 5.字符串与数组
- 6.异常处理
- 7.Object 通用方法
- 8.Java8
- 8.1 Java 8 Tutorial
- 8.2 Java 8 数据流(Stream)
- 8.3 Java 8 并发教程:线程和执行器
- 8.4 Java 8 并发教程:同步和锁
- 8.5 Java 8 并发教程:原子变量和 ConcurrentMap
- 8.6 Java 8 API 示例:字符串、数值、算术和文件
- 8.7 在 Java 8 中避免 Null 检查
- 8.8 使用 Intellij IDEA 解决 Java 8 的数据流问题
- 四.Java 并发编程
- 1.线程的实现/创建
- 2.线程生命周期/状态转换
- 3.线程池
- 4.线程中的协作、中断
- 5.Java锁
- 5.1 乐观锁、悲观锁和自旋锁
- 5.2 Synchronized
- 5.3 ReentrantLock
- 5.4 公平锁和非公平锁
- 5.3.1 说说ReentrantLock的实现原理,以及ReentrantLock的核心源码是如何实现的?
- 5.5 锁优化和升级
- 6.多线程的上下文切换
- 7.死锁的产生和解决
- 8.J.U.C(java.util.concurrent)
- 0.简化版(快速复习用)
- 9.锁优化
- 10.Java 内存模型(JMM)
- 11.ThreadLocal详解
- 12 CAS
- 13.AQS
- 0.ArrayBlockingQueue和LinkedBlockingQueue的实现原理
- 1.DelayQueue的实现原理
- 14.Thread.join()实现原理
- 15.PriorityQueue 的特性和原理
- 16.CyclicBarrier的实际使用场景
- 五.Java I/O NIO
- 1.I/O模型简述
- 2.Java NIO之缓冲区
- 3.JAVA NIO之文件通道
- 4.Java NIO之套接字通道
- 5.Java NIO之选择器
- 6.基于 Java NIO 实现简单的 HTTP 服务器
- 7.BIO-NIO-AIO
- 8.netty(一)
- 9.NIO面试题
- 六.Java设计模式
- 1.单例模式
- 2.策略模式
- 3.模板方法
- 4.适配器模式
- 5.简单工厂
- 6.门面模式
- 7.代理模式
- 七.数据结构和算法
- 1.什么是红黑树
- 2.二叉树
- 2.1 二叉树的前序、中序、后序遍历
- 3.排序算法汇总
- 4.java实现链表及链表的重用操作
- 4.1算法题-链表反转
- 5.图的概述
- 6.常见的几道字符串算法题
- 7.几道常见的链表算法题
- 8.leetcode常见算法题1
- 9.LRU缓存策略
- 10.二进制及位运算
- 10.1.二进制和十进制转换
- 10.2.位运算
- 11.常见链表算法题
- 12.算法好文推荐
- 13.跳表
- 八.Spring 全家桶
- 1.Spring IOC
- 2.Spring AOP
- 3.Spring 事务管理
- 4.SpringMVC 运行流程和手动实现
- 0.Spring 核心技术
- 5.spring如何解决循环依赖问题
- 6.springboot自动装配原理
- 7.Spring中的循环依赖解决机制中,为什么要三级缓存,用二级缓存不够吗
- 8.beanFactory和factoryBean有什么区别
- 九.数据库
- 1.mybatis
- 1.1 MyBatis-# 与 $ 区别以及 sql 预编译
- Mybatis系列1-Configuration
- Mybatis系列2-SQL执行过程
- Mybatis系列3-之SqlSession
- Mybatis系列4-之Executor
- Mybatis系列5-StatementHandler
- Mybatis系列6-MappedStatement
- Mybatis系列7-参数设置揭秘(ParameterHandler)
- Mybatis系列8-缓存机制
- 2.浅谈聚簇索引和非聚簇索引的区别
- 3.mysql 证明为什么用limit时,offset很大会影响性能
- 4.MySQL中的索引
- 5.数据库索引2
- 6.面试题收集
- 7.MySQL行锁、表锁、间隙锁详解
- 8.数据库MVCC详解
- 9.一条SQL查询语句是如何执行的
- 10.MySQL 的 crash-safe 原理解析
- 11.MySQL 性能优化神器 Explain 使用分析
- 12.mysql中,一条update语句执行的过程是怎么样的?期间用到了mysql的哪些log,分别有什么作用
- 十.Redis
- 0.快速复习回顾Redis
- 1.通俗易懂的Redis数据结构基础教程
- 2.分布式锁(一)
- 3.分布式锁(二)
- 4.延时队列
- 5.位图Bitmaps
- 6.Bitmaps(位图)的使用
- 7.Scan
- 8.redis缓存雪崩、缓存击穿、缓存穿透
- 9.Redis为什么是单线程、及高并发快的3大原因详解
- 10.布隆过滤器你值得拥有的开发利器
- 11.Redis哨兵、复制、集群的设计原理与区别
- 12.redis的IO多路复用
- 13.相关redis面试题
- 14.redis集群
- 十一.中间件
- 1.RabbitMQ
- 1.1 RabbitMQ实战,hello world
- 1.2 RabbitMQ 实战,工作队列
- 1.3 RabbitMQ 实战, 发布订阅
- 1.4 RabbitMQ 实战,路由
- 1.5 RabbitMQ 实战,主题
- 1.6 Spring AMQP 的 AMQP 抽象
- 1.7 Spring AMQP 实战 – 整合 RabbitMQ 发送邮件
- 1.8 RabbitMQ 的消息持久化与 Spring AMQP 的实现剖析
- 1.9 RabbitMQ必备核心知识
- 2.RocketMQ 的几个简单问题与答案
- 2.Kafka
- 2.1 kafka 基础概念和术语
- 2.2 Kafka的重平衡(Rebalance)
- 2.3.kafka日志机制
- 2.4 kafka是pull还是push的方式传递消息的?
- 2.5 Kafka的数据处理流程
- 2.6 Kafka的脑裂预防和处理机制
- 2.7 Kafka中partition副本的Leader选举机制
- 2.8 如果Leader挂了的时候,follower没来得及同步,是否会出现数据不一致
- 2.9 kafka的partition副本是否会出现脑裂情况
- 十二.Zookeeper
- 0.什么是Zookeeper(漫画)
- 1.使用docker安装Zookeeper伪集群
- 3.ZooKeeper-Plus
- 4.zk实现分布式锁
- 5.ZooKeeper之Watcher机制
- 6.Zookeeper之选举及数据一致性
- 十三.计算机网络
- 1.进制转换:二进制、八进制、十六进制、十进制之间的转换
- 2.位运算
- 3.计算机网络面试题汇总1
- 十四.Docker
- 100.面试题收集合集
- 1.美团面试常见问题总结
- 2.b站部分面试题
- 3.比心面试题
- 4.腾讯面试题
- 5.哈罗部分面试
- 6.笔记
- 十五.Storm
- 1.Storm和流处理简介
- 2.Storm 核心概念详解
- 3.Storm 单机版本环境搭建
- 4.Storm 集群环境搭建
- 5.Storm 编程模型详解
- 6.Storm 项目三种打包方式对比分析
- 7.Storm 集成 Redis 详解
- 8.Storm 集成 HDFS 和 HBase
- 9.Storm 集成 Kafka
- 十六.Elasticsearch
- 1.初识ElasticSearch
- 2.文档基本CRUD、集群健康检查
- 3.shard&replica
- 4.document核心元数据解析及ES的并发控制
- 5.document的批量操作及数据路由原理
- 6.倒排索引
- 十七.分布式相关
- 1.分布式事务解决方案一网打尽
- 2.关于xxx怎么保证高可用的问题
- 3.一致性hash原理与实现
- 4.微服务注册中心 Nacos 比 Eureka的优势
- 5.Raft 协议算法
- 6.为什么微服务架构中需要网关
- 0.CAP与BASE理论
- 十八.Dubbo
- 1.快速掌握Dubbo常规应用
- 2.Dubbo应用进阶
- 3.Dubbo调用模块详解
- 4.Dubbo调用模块源码分析
- 6.Dubbo协议模块