ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
## 一、Storm集成HDFS ### 1.1 项目结构 ![](https://img.kancloud.cn/4d/47/4d477c581db864125400a7c5d98c6b4a_590x229.png) > 本用例源码下载地址:[storm-hdfs-integration](https://github.com/heibaiying/BigData-Notes/tree/master/code/Storm/storm-hdfs-integration) ### 1.2 项目主要依赖 项目主要依赖如下,有两个地方需要注意: * 这里由于我服务器上安装的是 CDH 版本的 Hadoop,在导入依赖时引入的也是 CDH 版本的依赖,需要使用 `<repository>` 标签指定 CDH 的仓库地址; * `hadoop-common`、`hadoop-client`、`hadoop-hdfs` 均需要排除 `slf4j-log4j12` 依赖,原因是 `storm-core` 中已经有该依赖,不排除的话有 JAR 包冲突的风险; ~~~ <properties> <storm.version>1.2.2</storm.version> </properties> <repositories> <repository> <id>cloudera</id> <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url> </repository> </repositories> <dependencies> <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-core</artifactId> <version>${storm.version}</version> </dependency> <!--Storm 整合 HDFS 依赖--> <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-hdfs</artifactId> <version>${storm.version}</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> <version>2.6.0-cdh5.15.2</version> <exclusions> <exclusion> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.6.0-cdh5.15.2</version> <exclusions> <exclusion> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-hdfs</artifactId> <version>2.6.0-cdh5.15.2</version> <exclusions> <exclusion> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> </exclusion> </exclusions> </dependency> </dependencies> ~~~ ### 1.3 DataSourceSpout ~~~ /** * 产生词频样本的数据源 */ public class DataSourceSpout extends BaseRichSpout { private List<String> list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive"); private SpoutOutputCollector spoutOutputCollector; @Override public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) { this.spoutOutputCollector = spoutOutputCollector; } @Override public void nextTuple() { // 模拟产生数据 String lineData = productData(); spoutOutputCollector.emit(new Values(lineData)); Utils.sleep(1000); } @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new Fields("line")); } /** * 模拟数据 */ private String productData() { Collections.shuffle(list); Random random = new Random(); int endIndex = random.nextInt(list.size()) % (list.size()) + 1; return StringUtils.join(list.toArray(), "\t", 0, endIndex); } } ~~~ 产生的模拟数据格式如下: ~~~ Spark HBase Hive Flink Storm Hadoop HBase Spark Flink HBase Storm HBase Hadoop Hive Flink HBase Flink Hive Storm Hive Flink Hadoop HBase Hive Hadoop Spark HBase Storm ~~~ ### 1.4 将数据存储到HDFS 这里 HDFS 的地址和数据存储路径均使用了硬编码,在实际开发中可以通过外部传参指定,这样程序更为灵活。 ~~~ public class DataToHdfsApp { private static final String DATA_SOURCE_SPOUT = "dataSourceSpout"; private static final String HDFS_BOLT = "hdfsBolt"; public static void main(String[] args) { // 指定 Hadoop 的用户名 如果不指定,则在 HDFS 创建目录时候有可能抛出无权限的异常 (RemoteException: Permission denied) System.setProperty("HADOOP_USER_NAME", "root"); // 定义输出字段 (Field) 之间的分隔符 RecordFormat format = new DelimitedRecordFormat() .withFieldDelimiter("|"); // 同步策略: 每 100 个 tuples 之后就会把数据从缓存刷新到 HDFS 中 SyncPolicy syncPolicy = new CountSyncPolicy(100); // 文件策略: 每个文件大小上限 1M,超过限定时,创建新文件并继续写入 FileRotationPolicy rotationPolicy = new FileSizeRotationPolicy(1.0f, Units.MB); // 定义存储路径 FileNameFormat fileNameFormat = new DefaultFileNameFormat() .withPath("/storm-hdfs/"); // 定义 HdfsBolt HdfsBolt hdfsBolt = new HdfsBolt() .withFsUrl("hdfs://hadoop001:8020") .withFileNameFormat(fileNameFormat) .withRecordFormat(format) .withRotationPolicy(rotationPolicy) .withSyncPolicy(syncPolicy); // 构建 Topology TopologyBuilder builder = new TopologyBuilder(); builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout()); // save to HDFS builder.setBolt(HDFS_BOLT, hdfsBolt, 1).shuffleGrouping(DATA_SOURCE_SPOUT); // 如果外部传参 cluster 则代表线上环境启动,否则代表本地启动 if (args.length > 0 && args[0].equals("cluster")) { try { StormSubmitter.submitTopology("ClusterDataToHdfsApp", new Config(), builder.createTopology()); } catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) { e.printStackTrace(); } } else { LocalCluster cluster = new LocalCluster(); cluster.submitTopology("LocalDataToHdfsApp", new Config(), builder.createTopology()); } } } ~~~ ### 1.5 启动测试 可以用直接使用本地模式运行,也可以打包后提交到服务器集群运行。本仓库提供的源码默认采用 `maven-shade-plugin` 进行打包,打包命令如下: ~~~ # mvn clean package -D maven.test.skip=true ~~~ 运行后,数据会存储到 HDFS 的 `/storm-hdfs` 目录下。使用以下命令可以查看目录内容: ~~~ # 查看目录内容 hadoop fs -ls /storm-hdfs # 监听文内容变化 hadoop fs -tail -f /strom-hdfs/文件名 ~~~ ![](https://img.kancloud.cn/cb/98/cb9870f3f80e8097f43e767e3cc3b84a_953x445.png) ## 二、Storm集成HBase ### 2.1 项目结构 集成用例: 进行词频统计并将最后的结果存储到 HBase,项目主要结构如下: ![](https://img.kancloud.cn/e9/7e/e97eafb858d54fb15c8990c31147a83f_935x264.png) > 本用例源码下载地址:[storm-hbase-integration](https://github.com/heibaiying/BigData-Notes/tree/master/code/Storm/storm-hbase-integration) ### 2.2 项目主要依赖 ~~~ <properties> <storm.version>1.2.2</storm.version> </properties> <dependencies> <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-core</artifactId> <version>${storm.version}</version> </dependency> <!--Storm 整合 HBase 依赖--> <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-hbase</artifactId> <version>${storm.version}</version> </dependency> </dependencies> 复制代码 ~~~ ### 2.3 DataSourceSpout ~~~ /** * 产生词频样本的数据源 */ public class DataSourceSpout extends BaseRichSpout { private List<String> list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive"); private SpoutOutputCollector spoutOutputCollector; @Override public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) { this.spoutOutputCollector = spoutOutputCollector; } @Override public void nextTuple() { // 模拟产生数据 String lineData = productData(); spoutOutputCollector.emit(new Values(lineData)); Utils.sleep(1000); } @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new Fields("line")); } /** * 模拟数据 */ private String productData() { Collections.shuffle(list); Random random = new Random(); int endIndex = random.nextInt(list.size()) % (list.size()) + 1; return StringUtils.join(list.toArray(), "\t", 0, endIndex); } } 复制代码 ~~~ 产生的模拟数据格式如下: ~~~ Spark HBase Hive Flink Storm Hadoop HBase Spark Flink HBase Storm HBase Hadoop Hive Flink HBase Flink Hive Storm Hive Flink Hadoop HBase Hive Hadoop Spark HBase Storm 复制代码 ~~~ ### 2.4 SplitBolt ~~~ /** * 将每行数据按照指定分隔符进行拆分 */ public class SplitBolt extends BaseRichBolt { private OutputCollector collector; @Override public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { this.collector = collector; } @Override public void execute(Tuple input) { String line = input.getStringByField("line"); String[] words = line.split("\t"); for (String word : words) { collector.emit(tuple(word, 1)); } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word", "count")); } } 复制代码 ~~~ ### 2.5 CountBolt ~~~ /** * 进行词频统计 */ public class CountBolt extends BaseRichBolt { private Map<String, Integer> counts = new HashMap<>(); private OutputCollector collector; @Override public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { this.collector=collector; } @Override public void execute(Tuple input) { String word = input.getStringByField("word"); Integer count = counts.get(word); if (count == null) { count = 0; } count++; counts.put(word, count); // 输出 collector.emit(new Values(word, String.valueOf(count))); } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word", "count")); } } ~~~ ### 2.6 WordCountToHBaseApp ~~~ /** * 进行词频统计 并将统计结果存储到 HBase 中 */ public class WordCountToHBaseApp { private static final String DATA_SOURCE_SPOUT = "dataSourceSpout"; private static final String SPLIT_BOLT = "splitBolt"; private static final String COUNT_BOLT = "countBolt"; private static final String HBASE_BOLT = "hbaseBolt"; public static void main(String[] args) { // storm 的配置 Config config = new Config(); // HBase 的配置 Map<String, Object> hbConf = new HashMap<>(); hbConf.put("hbase.rootdir", "hdfs://hadoop001:8020/hbase"); hbConf.put("hbase.zookeeper.quorum", "hadoop001:2181"); // 将 HBase 的配置传入 Storm 的配置中 config.put("hbase.conf", hbConf); // 定义流数据与 HBase 中数据的映射 SimpleHBaseMapper mapper = new SimpleHBaseMapper() .withRowKeyField("word") .withColumnFields(new Fields("word","count")) .withColumnFamily("info"); /* * 给 HBaseBolt 传入表名、数据映射关系、和 HBase 的配置信息 * 表需要预先创建: create 'WordCount','info' */ HBaseBolt hbase = new HBaseBolt("WordCount", mapper) .withConfigKey("hbase.conf"); // 构建 Topology TopologyBuilder builder = new TopologyBuilder(); builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout(),1); // split builder.setBolt(SPLIT_BOLT, new SplitBolt(), 1).shuffleGrouping(DATA_SOURCE_SPOUT); // count builder.setBolt(COUNT_BOLT, new CountBolt(),1).shuffleGrouping(SPLIT_BOLT); // save to HBase builder.setBolt(HBASE_BOLT, hbase, 1).shuffleGrouping(COUNT_BOLT); // 如果外部传参 cluster 则代表线上环境启动,否则代表本地启动 if (args.length > 0 && args[0].equals("cluster")) { try { StormSubmitter.submitTopology("ClusterWordCountToRedisApp", config, builder.createTopology()); } catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) { e.printStackTrace(); } } else { LocalCluster cluster = new LocalCluster(); cluster.submitTopology("LocalWordCountToRedisApp", config, builder.createTopology()); } } } ~~~ ### 2.7 启动测试 可以用直接使用本地模式运行,也可以打包后提交到服务器集群运行。本仓库提供的源码默认采用 `maven-shade-plugin` 进行打包,打包命令如下: ~~~ # mvn clean package -D maven.test.skip=true ~~~ 运行后,数据会存储到 HBase 的 `WordCount` 表中。使用以下命令查看表的内容: ~~~ hbase > scan 'WordCount' ~~~ ![](https://img.kancloud.cn/1c/fa/1cfa94aff17f2890d3e6a277e9df1356_867x259.png) ### 2.8 withCounterFields 在上面的用例中我们是手动编码来实现词频统计,并将最后的结果存储到 HBase 中。其实也可以在构建 `SimpleHBaseMapper` 的时候通过 `withCounterFields` 指定 count 字段,被指定的字段会自动进行累加操作,这样也可以实现词频统计。需要注意的是 withCounterFields 指定的字段必须是 Long 类型,不能是 String 类型。 ~~~ SimpleHBaseMapper mapper = new SimpleHBaseMapper() .withRowKeyField("word") .withColumnFields(new Fields("word")) .withCounterFields(new Fields("count")) .withColumnFamily("cf"); ~~~ ## 参考资料 1. [Apache HDFS Integration](http://storm.apache.org/releases/2.0.0-SNAPSHOT/storm-hdfs.html) 2. [Apache HBase Integration](http://storm.apache.org/releases/2.0.0-SNAPSHOT/storm-hbase.html) 作者:heibaiying 链接:https://juejin.cn/post/6844903950039138318 来源:掘金 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。