[TOC]
大家可能都听说说 Java 中的并发包,如果想要读懂 Java 中的并发包,其核心就是要先读懂 CAS 机制,因为 CAS 可以说是并发包的底层实现原理。
今天就带大家读懂 CAS 是如何保证操作的原子性的,以及 Java8 对 CAS 进行了哪些优化。
### synchronized:大材小用
我们先来看几行代码:
~~~
public class CASTest {
static int i = 0;
public static void increment() {
i++;
}
}
复制代码
~~~
假如有100个线程同时调用 increment() 方法对 i 进行自增操作,i 的结果会是 100 吗?
学会多线程的同学应该都知道,这个方法是线程不安全的,由于 i++ 不是一个**原子操作**,所以是很难得到 100 的。
> 这里稍微解释下为啥会得不到 100(知道的可直接跳过), i++ 这个操作,计算机需要分成三步来执行。 1、读取 i 的值。 2、把 i 加 1. 3、把 最终 i 的结果写入内存之中。所以,假如线程 A 读取了 i 的值为 i = 0,这个时候线程 B 也读取了 i 的值 i = 0。接着 A把 i 加 1,然后写入内存,此时 i = 1。紧接着,B也把 i 加 1,此时线程B中的 i = 1,然后线程 B 把 i 写入内存,此时内存中的 i = 1。也就是说,线程 A, B 都对 i 进行了自增,但最终的结果却是 1,不是 2.
那该怎么办呢?解决的策略一般都是给这个方法加个锁,如下
~~~
public class CASTest {
static int i = 0;
public synchronized static void increment() {
i++;
}
}
复制代码
~~~
加了 synchronized 之后,就最多只能有一个线程能够进入这个 increment() 方法了。这样,就不会出现线程不安全了。不懂 synchronized 的可以看我这篇文章:[彻底搞懂synchronized(从偏向锁到重量级锁)](https://mp.weixin.qq.com/s/qDvd8MYAzBXOsWgzwIbNMA)
然而,一个简简单单的自增操作,就加了 synchronized 进行同步,好像有点大材小用的感觉,加了 synchronized 关键词之后,当有很多线程去竞争 increment 这个方法的时候,拿不到锁的方法是会被**阻塞**在方法外面的,最后再来唤醒他们,而阻塞/唤醒这些操作,是非常消耗时间的。
> 这里可能有人会说,synchronized 到了JDK1.6之后不是做了很多优化吗?是的,确实做了很多优化,增加了偏向锁、轻量级锁等, 但是,就算增加了这些,当很多线程来竞争的时候,开销依然很多,不信你看我另外一篇文章的介绍:[彻底搞懂synchronized(从偏向锁到重量级锁)](https://mp.weixin.qq.com/s/qDvd8MYAzBXOsWgzwIbNMA)
### CAS :这种小事交给我
那有没有其他方法来代替 synchronized 对方法的加锁,并且保证 increment() 方法是线程安全呢?
大家看一下,如果我采用下面这种方式,能否保证 increment 是线程安全的呢?步骤如下:
1、线程从内存中读取 i 的值,假如此时 i 的值为 0,我们把这个值称为 k 吧,即此时 k = 0。
2、令 j = k + 1。
3、用 k 的值与内存中i的值相比,如果相等,这意味着没有其他线程修改过 i 的值,我们就把 j(此时为1) 的值写入内存;如果不相等(意味着i的值被其他线程修改过),我们就不把j的值写入内存,而是重新跳回步骤 1,继续这三个操作。
翻译成代码的话就是这样:
~~~
public static void increment() {
do{
int k = i;
int j = k + 1;
}while (compareAndSet(i, k, j))
}
复制代码
~~~
如果你去模拟一下,就会发现,这样写是线程安全的。
这里可能有人会说,第三步的 compareAndSet 这个操作不仅要读取内存,还干了比较、写入内存等操作,,,这一步本身就是线程不安全的啊?
如果你能想到这个,说明你是真的有去思考、模拟这个过程,不过我想要告诉你的是,这个 compareAndSet 操作,他其实只对应操作系统的**一条硬件操作指令**,尽管看似有很多操作在里面,但操作系统能够保证他是原子执行的。
对于一条英文单词很长的指令,我们都喜欢用它的简称来称呼他,所以,我们就把 compareAndSet 称为 **CAS** 吧。
所以,采用 CAS 这种机制的写法也是线程安全的,通过这种方式,可以说是不存在锁的竞争,也不存在阻塞等事情的发生,可以让程序执行的更好。
在 Java 中,也是提供了这种 CAS 的原子类,例如:
1. AtomicBoolean
2. AtomicInteger
3. AtomicLong
4. AtomicReference
具体如何使用呢?我就以上面那个例子进行改版吧,代码如下:
~~~
public class CASTest {
static AtomicInteger i = new AtomicInteger(0);
public static void increment() {
// 自增 1并返回之后的结果
i.incrementAndGet();
}
}
复制代码
~~~
### CAS:谁偷偷更改了我的值
虽然这种 CAS 的机制能够保证increment() 方法,但依然有一些问题,例如,当线程A即将要执行第三步的时候,线程 B 把 i 的值加1,之后又马上把 i 的值减 1,然后,线程 A 执行第三步,这个时候线程 A 是认为并没有人修改过 i 的值,因为 i 的值并没有发生改变。而这,就是我们平常说的**ABA问题**。
对于基本类型的值来说,这种把**数字改变了在改回原来的值**是没有太大影响的,但如果是对于引用类型的话,就会产生很大的影响了。
### 来个版本控制吧
为了解决这个 ABA 的问题,我们可以引入版本控制,例如,每次有线程修改了引用的值,就会进行版本的更新,虽然两个线程持有相同的引用,但他们的版本不同,这样,我们就可以预防 ABA 问题了。Java 中提供了 AtomicStampedReference 这个类,就可以进行版本控制了。
### Java8 对 CAS 的优化。
由于采用这种 CAS 机制是没有对方法进行加锁的,所以,所有的线程都可以进入 increment() 这个方法,假如进入这个方法的线程太多,就会出现一个问题:每次有线程要执行第三个步骤的时候,i 的值老是被修改了,所以线程又到回到第一步继续重头再来。
而这就会导致一个问题:由于线程太密集了,太多人想要修改 i 的值了,进而大部分人都会修改不成功,白白着在那里循环消耗资源。
为了解决这个问题,Java8 引入了一个 cell\[\] 数组,它的工作机制是这样的:假如有 5 个线程要对 i 进行自增操作,由于 5 个线程的话,不是很多,起冲突的几率较小,那就让他们按照以往正常的那样,采用 CAS 来自增吧。
但是,如果有 100 个线程要对 i 进行自增操作的话,这个时候,冲突就会大大增加,系统就会把这些线程分配到不同的 cell 数组元素去,假如 cell\[10\] 有 10 个元素吧,且元素的初始化值为 0,那么系统就会把 100 个线程分成 10 组,每一组对 cell 数组其中的一个元素做自增操作,这样到最后,cell 数组 10 个元素的值都为 10,系统在把这 10 个元素的值进行汇总,进而得到 100,二这,就等价于 100 个线程对 i 进行了 100 次自增操作。
当然,我这里只是举个例子来说明 Java8 对 CAS 优化的大致原理,具体的大家有兴趣可以去看源码,或者去搜索对应的文章哦。
### 总结
理解 CAS 的原理还是非常重要的,它是 AQS 的基石,而 AQS 又是并发框架的基石,接下来有时间的话,还会写一篇 AQS 的文章。
作者:帅地
链接:https://juejin.cn/post/6844903841406648333
来源:掘金
- 一.JVM
- 1.1 java代码是怎么运行的
- 1.2 JVM的内存区域
- 1.3 JVM运行时内存
- 1.4 JVM内存分配策略
- 1.5 JVM类加载机制与对象的生命周期
- 1.6 常用的垃圾回收算法
- 1.7 JVM垃圾收集器
- 1.8 CMS垃圾收集器
- 1.9 G1垃圾收集器
- 2.面试相关文章
- 2.1 可能是把Java内存区域讲得最清楚的一篇文章
- 2.0 GC调优参数
- 2.1GC排查系列
- 2.2 内存泄漏和内存溢出
- 2.2.3 深入理解JVM-hotspot虚拟机对象探秘
- 1.10 并发的可达性分析相关问题
- 二.Java集合架构
- 1.ArrayList深入源码分析
- 2.Vector深入源码分析
- 3.LinkedList深入源码分析
- 4.HashMap深入源码分析
- 5.ConcurrentHashMap深入源码分析
- 6.HashSet,LinkedHashSet 和 LinkedHashMap
- 7.容器中的设计模式
- 8.集合架构之面试指南
- 9.TreeSet和TreeMap
- 三.Java基础
- 1.基础概念
- 1.1 Java程序初始化的顺序是怎么样的
- 1.2 Java和C++的区别
- 1.3 反射
- 1.4 注解
- 1.5 泛型
- 1.6 字节与字符的区别以及访问修饰符
- 1.7 深拷贝与浅拷贝
- 1.8 字符串常量池
- 2.面向对象
- 3.关键字
- 4.基本数据类型与运算
- 5.字符串与数组
- 6.异常处理
- 7.Object 通用方法
- 8.Java8
- 8.1 Java 8 Tutorial
- 8.2 Java 8 数据流(Stream)
- 8.3 Java 8 并发教程:线程和执行器
- 8.4 Java 8 并发教程:同步和锁
- 8.5 Java 8 并发教程:原子变量和 ConcurrentMap
- 8.6 Java 8 API 示例:字符串、数值、算术和文件
- 8.7 在 Java 8 中避免 Null 检查
- 8.8 使用 Intellij IDEA 解决 Java 8 的数据流问题
- 四.Java 并发编程
- 1.线程的实现/创建
- 2.线程生命周期/状态转换
- 3.线程池
- 4.线程中的协作、中断
- 5.Java锁
- 5.1 乐观锁、悲观锁和自旋锁
- 5.2 Synchronized
- 5.3 ReentrantLock
- 5.4 公平锁和非公平锁
- 5.3.1 说说ReentrantLock的实现原理,以及ReentrantLock的核心源码是如何实现的?
- 5.5 锁优化和升级
- 6.多线程的上下文切换
- 7.死锁的产生和解决
- 8.J.U.C(java.util.concurrent)
- 0.简化版(快速复习用)
- 9.锁优化
- 10.Java 内存模型(JMM)
- 11.ThreadLocal详解
- 12 CAS
- 13.AQS
- 0.ArrayBlockingQueue和LinkedBlockingQueue的实现原理
- 1.DelayQueue的实现原理
- 14.Thread.join()实现原理
- 15.PriorityQueue 的特性和原理
- 16.CyclicBarrier的实际使用场景
- 五.Java I/O NIO
- 1.I/O模型简述
- 2.Java NIO之缓冲区
- 3.JAVA NIO之文件通道
- 4.Java NIO之套接字通道
- 5.Java NIO之选择器
- 6.基于 Java NIO 实现简单的 HTTP 服务器
- 7.BIO-NIO-AIO
- 8.netty(一)
- 9.NIO面试题
- 六.Java设计模式
- 1.单例模式
- 2.策略模式
- 3.模板方法
- 4.适配器模式
- 5.简单工厂
- 6.门面模式
- 7.代理模式
- 七.数据结构和算法
- 1.什么是红黑树
- 2.二叉树
- 2.1 二叉树的前序、中序、后序遍历
- 3.排序算法汇总
- 4.java实现链表及链表的重用操作
- 4.1算法题-链表反转
- 5.图的概述
- 6.常见的几道字符串算法题
- 7.几道常见的链表算法题
- 8.leetcode常见算法题1
- 9.LRU缓存策略
- 10.二进制及位运算
- 10.1.二进制和十进制转换
- 10.2.位运算
- 11.常见链表算法题
- 12.算法好文推荐
- 13.跳表
- 八.Spring 全家桶
- 1.Spring IOC
- 2.Spring AOP
- 3.Spring 事务管理
- 4.SpringMVC 运行流程和手动实现
- 0.Spring 核心技术
- 5.spring如何解决循环依赖问题
- 6.springboot自动装配原理
- 7.Spring中的循环依赖解决机制中,为什么要三级缓存,用二级缓存不够吗
- 8.beanFactory和factoryBean有什么区别
- 九.数据库
- 1.mybatis
- 1.1 MyBatis-# 与 $ 区别以及 sql 预编译
- Mybatis系列1-Configuration
- Mybatis系列2-SQL执行过程
- Mybatis系列3-之SqlSession
- Mybatis系列4-之Executor
- Mybatis系列5-StatementHandler
- Mybatis系列6-MappedStatement
- Mybatis系列7-参数设置揭秘(ParameterHandler)
- Mybatis系列8-缓存机制
- 2.浅谈聚簇索引和非聚簇索引的区别
- 3.mysql 证明为什么用limit时,offset很大会影响性能
- 4.MySQL中的索引
- 5.数据库索引2
- 6.面试题收集
- 7.MySQL行锁、表锁、间隙锁详解
- 8.数据库MVCC详解
- 9.一条SQL查询语句是如何执行的
- 10.MySQL 的 crash-safe 原理解析
- 11.MySQL 性能优化神器 Explain 使用分析
- 12.mysql中,一条update语句执行的过程是怎么样的?期间用到了mysql的哪些log,分别有什么作用
- 十.Redis
- 0.快速复习回顾Redis
- 1.通俗易懂的Redis数据结构基础教程
- 2.分布式锁(一)
- 3.分布式锁(二)
- 4.延时队列
- 5.位图Bitmaps
- 6.Bitmaps(位图)的使用
- 7.Scan
- 8.redis缓存雪崩、缓存击穿、缓存穿透
- 9.Redis为什么是单线程、及高并发快的3大原因详解
- 10.布隆过滤器你值得拥有的开发利器
- 11.Redis哨兵、复制、集群的设计原理与区别
- 12.redis的IO多路复用
- 13.相关redis面试题
- 14.redis集群
- 十一.中间件
- 1.RabbitMQ
- 1.1 RabbitMQ实战,hello world
- 1.2 RabbitMQ 实战,工作队列
- 1.3 RabbitMQ 实战, 发布订阅
- 1.4 RabbitMQ 实战,路由
- 1.5 RabbitMQ 实战,主题
- 1.6 Spring AMQP 的 AMQP 抽象
- 1.7 Spring AMQP 实战 – 整合 RabbitMQ 发送邮件
- 1.8 RabbitMQ 的消息持久化与 Spring AMQP 的实现剖析
- 1.9 RabbitMQ必备核心知识
- 2.RocketMQ 的几个简单问题与答案
- 2.Kafka
- 2.1 kafka 基础概念和术语
- 2.2 Kafka的重平衡(Rebalance)
- 2.3.kafka日志机制
- 2.4 kafka是pull还是push的方式传递消息的?
- 2.5 Kafka的数据处理流程
- 2.6 Kafka的脑裂预防和处理机制
- 2.7 Kafka中partition副本的Leader选举机制
- 2.8 如果Leader挂了的时候,follower没来得及同步,是否会出现数据不一致
- 2.9 kafka的partition副本是否会出现脑裂情况
- 十二.Zookeeper
- 0.什么是Zookeeper(漫画)
- 1.使用docker安装Zookeeper伪集群
- 3.ZooKeeper-Plus
- 4.zk实现分布式锁
- 5.ZooKeeper之Watcher机制
- 6.Zookeeper之选举及数据一致性
- 十三.计算机网络
- 1.进制转换:二进制、八进制、十六进制、十进制之间的转换
- 2.位运算
- 3.计算机网络面试题汇总1
- 十四.Docker
- 100.面试题收集合集
- 1.美团面试常见问题总结
- 2.b站部分面试题
- 3.比心面试题
- 4.腾讯面试题
- 5.哈罗部分面试
- 6.笔记
- 十五.Storm
- 1.Storm和流处理简介
- 2.Storm 核心概念详解
- 3.Storm 单机版本环境搭建
- 4.Storm 集群环境搭建
- 5.Storm 编程模型详解
- 6.Storm 项目三种打包方式对比分析
- 7.Storm 集成 Redis 详解
- 8.Storm 集成 HDFS 和 HBase
- 9.Storm 集成 Kafka
- 十六.Elasticsearch
- 1.初识ElasticSearch
- 2.文档基本CRUD、集群健康检查
- 3.shard&replica
- 4.document核心元数据解析及ES的并发控制
- 5.document的批量操作及数据路由原理
- 6.倒排索引
- 十七.分布式相关
- 1.分布式事务解决方案一网打尽
- 2.关于xxx怎么保证高可用的问题
- 3.一致性hash原理与实现
- 4.微服务注册中心 Nacos 比 Eureka的优势
- 5.Raft 协议算法
- 6.为什么微服务架构中需要网关
- 0.CAP与BASE理论
- 十八.Dubbo
- 1.快速掌握Dubbo常规应用
- 2.Dubbo应用进阶
- 3.Dubbo调用模块详解
- 4.Dubbo调用模块源码分析
- 6.Dubbo协议模块