# 漫画:什么是ZooKeeper?
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1e7ef01f25?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1e7eacfa72?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
**————— 第二天 —————**
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1e7e8a4ee7?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1e7e583dd2?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1e7e1b50b1?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1e7eca540a?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1e901687ed?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1e91fa44c9?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ea32a4946?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1e9444bd57?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1e99419c00?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1e929a2306?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
————————————
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ea7d9e138?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ea935c843?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1eb761d1ce?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1eadd05065?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ea9cbc8b7?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1eb8ee2a43?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ebb57c7ac?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
**Zookeeper的数据模型**
Zookeeper的数据模型是什么样子呢?它很像数据结构当中的树,也很像文件系统的目录。
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ec0628043?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
树是由节点所组成,Zookeeper的数据存储也同样是基于节点,这种节点叫做**Znode**。
但是,不同于树的节点,Znode的引用方式是**路径引用**,类似于文件路径:
/ 动物 / 仓鼠
/ 植物 / 荷花
这样的层级结构,让每一个Znode节点拥有唯一的路径,就像命名空间一样对不同信息作出清晰的隔离。
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ec3d499f7?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ec4f082f7?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ecf740084?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
**data:**
Znode存储的数据信息。
**ACL:**
记录Znode的访问权限,即哪些人或哪些IP可以访问本节点。
**stat:**
包含Znode的各种元数据,比如事务ID、版本号、时间戳、大小等等。
**child:**
当前节点的子节点引用,类似于二叉树的左孩子右孩子。
这里需要注意一点,Zookeeper是为读多写少的场景所设计。Znode并不是用来存储大规模业务数据,而是用于存储少量的状态和配置信息,**每个节点的数据最大不能超过1MB**。
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ed000daec?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ed2b2c840?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
******Zookeeper的基本操作和事件通知******
Zookeeper包含了哪些基本操作呢?这里列举出比较常用的API:
**create**
创建节点
**delete**
删除节点
**exists**
判断节点是否存在
**getData**
获得一个节点的数据
**setData**
设置一个节点的数据
**getChildren**
获取节点下的所有子节点
这其中,exists,getData,getChildren属于读操作。Zookeeper客户端在请求读操作的时候,可以选择是否设置**Watch**。
Watch是什么意思呢?
我们可以理解成是注册在特定Znode上的触发器。当这个Znode发生改变,也就是调用了create,delete,setData方法的时候,将会触发Znode上注册的对应事件,请求Watch的客户端会接收到**异步通知**。
具体交互过程如下:
1.客户端调用getData方法,watch参数是true。服务端接到请求,返回节点数据,并且在对应的哈希表里插入被Watch的Znode路径,以及Watcher列表。
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ed9705c06?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
2.当被Watch的Znode已删除,服务端会查找哈希表,找到该Znode对应的所有Watcher,异步通知客户端,并且删除哈希表中对应的Key-Value。
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1edd68970f?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
****Zookeeper的一致性****
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ee4e0a92c?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ef8c4ccf5?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
Zookeeper的集群长成什么样呢?就像下图这样:
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1ee4301aa0?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
Zookeeper Service集群是一主多从结构。
在更新数据时,首先更新到主节点(这里的节点是指服务器,不是Znode),再同步到从节点。
在读取数据时,直接读取任意从节点。
为了保证主从节点的数据一致性,Zookeeper采用了**ZAB协议**,这种协议非常类似于一致性算法**Paxos**和**Raft**。
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1f6460f0f0?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1f64b98346?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
在学习ZAB之前,我们需要首先了解ZAB协议所定义的三种节点状态:
**Looking**:选举状态。
**Following**:Follower节点(从节点)所处的状态。
**Leading**:Leader节点(主节点)所处状态。
我们还需要知道**最大ZXID**的概念:
最大ZXID也就是节点本地的最新事务编号,包含**epoch**和计数两部分。epoch是纪元的意思,相当于Raft算法选主时候的term。
假如Zookeeper当前的主节点挂掉了,集群会进行**崩溃恢复**。ZAB的崩溃恢复分成三个阶段:
**1.Leader election**
选举阶段,此时集群中的节点处于Looking状态。它们会各自向其他节点发起投票,投票当中包含自己的服务器ID和最新事务ID(ZXID)。
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1f6f2ecd7c?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
接下来,节点会用自身的ZXID和从其他节点接收到的ZXID做比较,如果发现别人家的ZXID比自己大,也就是数据比自己新,那么就重新发起投票,投票给目前已知最大的ZXID所属节点。
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1f6e214ec4?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
每次投票后,服务器都会统计投票数量,判断是否有某个节点得到半数以上的投票。如果存在这样的节点,该节点将会成为准Leader,状态变为Leading。其他节点的状态变为Following。
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1f76be030c?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
这就相当于,一群武林高手经过激烈的竞争,选出了武林盟主。
**2.Discovery**
发现阶段,用于在从节点中发现最新的ZXID和事务日志。或许有人会问:既然Leader被选为主节点,已经是集群里数据最新的了,为什么还要从节点中寻找最新事务呢?
这是为了防止某些意外情况,比如因网络原因在上一阶段产生多个Leader的情况。
所以这一阶段,Leader集思广益,接收所有Follower发来各自的最新epoch值。Leader从中选出最大的epoch,基于此值加1,生成新的epoch分发给各个Follower。
各个Follower收到全新的epoch后,返回ACK给Leader,带上各自最大的ZXID和历史事务日志。Leader选出最大的ZXID,并更新自身历史日志。
**3.Synchronization**
同步阶段,把Leader刚才收集得到的最新历史事务日志,同步给集群中所有的Follower。只有当半数Follower同步成功,这个准Leader才能成为正式的Leader。
自此,故障恢复正式完成。
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1f71087a17?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1f8069b4c2?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
什么是**Broadcast**呢?简单来说,就是Zookeeper常规情况下更新数据的时候,由Leader广播到所有的Follower。其过程如下:
1.客户端发出写入数据请求给任意Follower。
2.Follower把写入数据请求转发给Leader。
3.Leader采用二阶段提交方式,先发送Propose广播给Follower。
4.Follower接到Propose消息,写入日志成功后,返回ACK消息给Leader。
5.Leader接到半数以上ACK消息,返回成功给客户端,并且广播Commit请求给Follower。
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1f823dd0a6?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
Zab协议既不是强一致性,也不是弱一致性,而是处于两者之间的**单调一致性**。它依靠事务ID和版本号,保证了数据的更新和读取是有序的。
********Zookeeper的应用********
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1f850d69b9?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1f894886e6?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
**1.分布式锁**
这是雅虎研究员设计Zookeeper的初衷。利用Zookeeper的临时顺序节点,可以轻松实现分布式锁。
**2.服务注册和发现**
利用Znode和Watcher,可以实现分布式服务的注册和发现。最著名的应用就是阿里的分布式RPC框架Dubbo。
**3.共享配置和状态信息**
Redis的分布式解决方案Codis,就利用了Zookeeper来存放数据路由表和 codis-proxy 节点的元信息。同时 codis-config 发起的命令都会通过 ZooKeeper 同步到各个存活的 codis-proxy。
此外,Kafka、HBase、Hadoop,也都依靠Zookeeper同步节点信息,实现高可用。
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1f8dfa19b6?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
![](https://user-gold-cdn.xitu.io/2018/5/22/16385a1f92dd5bd0?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
**几点补充:**
1.ZAB协议相对比较复杂,小灰对此也只是浅层次的理解,有兴趣的小伙伴们可以去官方社区进行进一步学习。
**2.本漫画纯属娱乐,还请大家尽量珍惜当下的工作,切勿模仿小灰的行为哦。**
转载至:[https://juejin.im/post/5b037d5c518825426e024473](https://juejin.im/post/5b037d5c518825426e024473)
- 一.JVM
- 1.1 java代码是怎么运行的
- 1.2 JVM的内存区域
- 1.3 JVM运行时内存
- 1.4 JVM内存分配策略
- 1.5 JVM类加载机制与对象的生命周期
- 1.6 常用的垃圾回收算法
- 1.7 JVM垃圾收集器
- 1.8 CMS垃圾收集器
- 1.9 G1垃圾收集器
- 2.面试相关文章
- 2.1 可能是把Java内存区域讲得最清楚的一篇文章
- 2.0 GC调优参数
- 2.1GC排查系列
- 2.2 内存泄漏和内存溢出
- 2.2.3 深入理解JVM-hotspot虚拟机对象探秘
- 1.10 并发的可达性分析相关问题
- 二.Java集合架构
- 1.ArrayList深入源码分析
- 2.Vector深入源码分析
- 3.LinkedList深入源码分析
- 4.HashMap深入源码分析
- 5.ConcurrentHashMap深入源码分析
- 6.HashSet,LinkedHashSet 和 LinkedHashMap
- 7.容器中的设计模式
- 8.集合架构之面试指南
- 9.TreeSet和TreeMap
- 三.Java基础
- 1.基础概念
- 1.1 Java程序初始化的顺序是怎么样的
- 1.2 Java和C++的区别
- 1.3 反射
- 1.4 注解
- 1.5 泛型
- 1.6 字节与字符的区别以及访问修饰符
- 1.7 深拷贝与浅拷贝
- 1.8 字符串常量池
- 2.面向对象
- 3.关键字
- 4.基本数据类型与运算
- 5.字符串与数组
- 6.异常处理
- 7.Object 通用方法
- 8.Java8
- 8.1 Java 8 Tutorial
- 8.2 Java 8 数据流(Stream)
- 8.3 Java 8 并发教程:线程和执行器
- 8.4 Java 8 并发教程:同步和锁
- 8.5 Java 8 并发教程:原子变量和 ConcurrentMap
- 8.6 Java 8 API 示例:字符串、数值、算术和文件
- 8.7 在 Java 8 中避免 Null 检查
- 8.8 使用 Intellij IDEA 解决 Java 8 的数据流问题
- 四.Java 并发编程
- 1.线程的实现/创建
- 2.线程生命周期/状态转换
- 3.线程池
- 4.线程中的协作、中断
- 5.Java锁
- 5.1 乐观锁、悲观锁和自旋锁
- 5.2 Synchronized
- 5.3 ReentrantLock
- 5.4 公平锁和非公平锁
- 5.3.1 说说ReentrantLock的实现原理,以及ReentrantLock的核心源码是如何实现的?
- 5.5 锁优化和升级
- 6.多线程的上下文切换
- 7.死锁的产生和解决
- 8.J.U.C(java.util.concurrent)
- 0.简化版(快速复习用)
- 9.锁优化
- 10.Java 内存模型(JMM)
- 11.ThreadLocal详解
- 12 CAS
- 13.AQS
- 0.ArrayBlockingQueue和LinkedBlockingQueue的实现原理
- 1.DelayQueue的实现原理
- 14.Thread.join()实现原理
- 15.PriorityQueue 的特性和原理
- 16.CyclicBarrier的实际使用场景
- 五.Java I/O NIO
- 1.I/O模型简述
- 2.Java NIO之缓冲区
- 3.JAVA NIO之文件通道
- 4.Java NIO之套接字通道
- 5.Java NIO之选择器
- 6.基于 Java NIO 实现简单的 HTTP 服务器
- 7.BIO-NIO-AIO
- 8.netty(一)
- 9.NIO面试题
- 六.Java设计模式
- 1.单例模式
- 2.策略模式
- 3.模板方法
- 4.适配器模式
- 5.简单工厂
- 6.门面模式
- 7.代理模式
- 七.数据结构和算法
- 1.什么是红黑树
- 2.二叉树
- 2.1 二叉树的前序、中序、后序遍历
- 3.排序算法汇总
- 4.java实现链表及链表的重用操作
- 4.1算法题-链表反转
- 5.图的概述
- 6.常见的几道字符串算法题
- 7.几道常见的链表算法题
- 8.leetcode常见算法题1
- 9.LRU缓存策略
- 10.二进制及位运算
- 10.1.二进制和十进制转换
- 10.2.位运算
- 11.常见链表算法题
- 12.算法好文推荐
- 13.跳表
- 八.Spring 全家桶
- 1.Spring IOC
- 2.Spring AOP
- 3.Spring 事务管理
- 4.SpringMVC 运行流程和手动实现
- 0.Spring 核心技术
- 5.spring如何解决循环依赖问题
- 6.springboot自动装配原理
- 7.Spring中的循环依赖解决机制中,为什么要三级缓存,用二级缓存不够吗
- 8.beanFactory和factoryBean有什么区别
- 九.数据库
- 1.mybatis
- 1.1 MyBatis-# 与 $ 区别以及 sql 预编译
- Mybatis系列1-Configuration
- Mybatis系列2-SQL执行过程
- Mybatis系列3-之SqlSession
- Mybatis系列4-之Executor
- Mybatis系列5-StatementHandler
- Mybatis系列6-MappedStatement
- Mybatis系列7-参数设置揭秘(ParameterHandler)
- Mybatis系列8-缓存机制
- 2.浅谈聚簇索引和非聚簇索引的区别
- 3.mysql 证明为什么用limit时,offset很大会影响性能
- 4.MySQL中的索引
- 5.数据库索引2
- 6.面试题收集
- 7.MySQL行锁、表锁、间隙锁详解
- 8.数据库MVCC详解
- 9.一条SQL查询语句是如何执行的
- 10.MySQL 的 crash-safe 原理解析
- 11.MySQL 性能优化神器 Explain 使用分析
- 12.mysql中,一条update语句执行的过程是怎么样的?期间用到了mysql的哪些log,分别有什么作用
- 十.Redis
- 0.快速复习回顾Redis
- 1.通俗易懂的Redis数据结构基础教程
- 2.分布式锁(一)
- 3.分布式锁(二)
- 4.延时队列
- 5.位图Bitmaps
- 6.Bitmaps(位图)的使用
- 7.Scan
- 8.redis缓存雪崩、缓存击穿、缓存穿透
- 9.Redis为什么是单线程、及高并发快的3大原因详解
- 10.布隆过滤器你值得拥有的开发利器
- 11.Redis哨兵、复制、集群的设计原理与区别
- 12.redis的IO多路复用
- 13.相关redis面试题
- 14.redis集群
- 十一.中间件
- 1.RabbitMQ
- 1.1 RabbitMQ实战,hello world
- 1.2 RabbitMQ 实战,工作队列
- 1.3 RabbitMQ 实战, 发布订阅
- 1.4 RabbitMQ 实战,路由
- 1.5 RabbitMQ 实战,主题
- 1.6 Spring AMQP 的 AMQP 抽象
- 1.7 Spring AMQP 实战 – 整合 RabbitMQ 发送邮件
- 1.8 RabbitMQ 的消息持久化与 Spring AMQP 的实现剖析
- 1.9 RabbitMQ必备核心知识
- 2.RocketMQ 的几个简单问题与答案
- 2.Kafka
- 2.1 kafka 基础概念和术语
- 2.2 Kafka的重平衡(Rebalance)
- 2.3.kafka日志机制
- 2.4 kafka是pull还是push的方式传递消息的?
- 2.5 Kafka的数据处理流程
- 2.6 Kafka的脑裂预防和处理机制
- 2.7 Kafka中partition副本的Leader选举机制
- 2.8 如果Leader挂了的时候,follower没来得及同步,是否会出现数据不一致
- 2.9 kafka的partition副本是否会出现脑裂情况
- 十二.Zookeeper
- 0.什么是Zookeeper(漫画)
- 1.使用docker安装Zookeeper伪集群
- 3.ZooKeeper-Plus
- 4.zk实现分布式锁
- 5.ZooKeeper之Watcher机制
- 6.Zookeeper之选举及数据一致性
- 十三.计算机网络
- 1.进制转换:二进制、八进制、十六进制、十进制之间的转换
- 2.位运算
- 3.计算机网络面试题汇总1
- 十四.Docker
- 100.面试题收集合集
- 1.美团面试常见问题总结
- 2.b站部分面试题
- 3.比心面试题
- 4.腾讯面试题
- 5.哈罗部分面试
- 6.笔记
- 十五.Storm
- 1.Storm和流处理简介
- 2.Storm 核心概念详解
- 3.Storm 单机版本环境搭建
- 4.Storm 集群环境搭建
- 5.Storm 编程模型详解
- 6.Storm 项目三种打包方式对比分析
- 7.Storm 集成 Redis 详解
- 8.Storm 集成 HDFS 和 HBase
- 9.Storm 集成 Kafka
- 十六.Elasticsearch
- 1.初识ElasticSearch
- 2.文档基本CRUD、集群健康检查
- 3.shard&replica
- 4.document核心元数据解析及ES的并发控制
- 5.document的批量操作及数据路由原理
- 6.倒排索引
- 十七.分布式相关
- 1.分布式事务解决方案一网打尽
- 2.关于xxx怎么保证高可用的问题
- 3.一致性hash原理与实现
- 4.微服务注册中心 Nacos 比 Eureka的优势
- 5.Raft 协议算法
- 6.为什么微服务架构中需要网关
- 0.CAP与BASE理论
- 十八.Dubbo
- 1.快速掌握Dubbo常规应用
- 2.Dubbo应用进阶
- 3.Dubbo调用模块详解
- 4.Dubbo调用模块源码分析
- 6.Dubbo协议模块