## 模板方法模式
> 模板方法模式属于类的行为模式。其核心是定义一个操作中的算法骨架,而将一些步骤延迟到子类中。
#### 定义
模板方法(`Template Method`)模式就是带有模板功能的模式 ,组成模板方法的方法被定义在父类中,这些方法是抽象方法,在模板方法中规定了这些方法的执行流程,这些抽象方法需要子类来具体实现。换句话说,模板方法就是定义好了模板,也就是一定的流程,至于各个抽象方法的具体实现,则有子类们自己决定,所以查看父类的代码是无法知晓这些方法最终会进行何种具体处理,唯一知道的就是父类是如何调用这些方法的。
实现上述这些抽象方法的是子类,在子类中实现了抽象方法也就决定了具体的处理。也就是说,不用的子类中的实现是不同的,当父类的模板方法被调用的时候,处理的方式也就不同,但是值得一提的是,无论子类如何实现抽象方法,如何自定义各自的处理逻辑,它调用父类的模板方法的时候,都会按照父类事先规定好的流程来分别调用这些方法。像这种`在父类中定义好处理流程的框架,在子类中实现具体处理`的模式就是模板方法(`Template Method`)模式。
#### 问题引入
在生活中常常能见到类似模板方法模式的案例。比如,我们小时候都练过字帖,我们只要用笔就可以在字帖上临摹出优美的文字出来,看到字帖,在临摹之前就可以知道我们将会写出那些字出来,但是写出来字的效果就得依靠笔的类型,使用毛笔能临摹出粗字体,使用签字笔能临摹出细字体。
在比如,在炒菜的时候,一般步骤都是:`往锅里倒油——打开天然气灶——加入具体蔬菜——加入具体调料——出锅`,那么这个流程步骤就是一个模板,我们按照这个流程就可以炒出一盘热腾腾的蔬菜,至于加入的蔬菜和调料是什么类型,那么就得根据自己的口味了。
还有,一般我们玩游戏都有一个具体的步骤:`初始化游戏——开始玩游戏——游戏结束`,至于玩的是何种游戏,就可以根据自己的喜好来选择,但是都会遵循这个游戏步骤。这个步骤在模板方法模式中就是对应的模板。后面的示例代码将结合这个问题来对模板方法设计模式进行阐述。
#### 模板方法设计模式在JDK源码中的应用
模板方法模式也是一个非常常用的设计模式之一,在`JDK`源码中,就存在大量的模板方法设计模式的身影,比如:
* `java.io.InputStream`, `java.io.OutputStream`, `java.io.Reader`以及`java.io.Writer`中所有非抽象方法。
* `java.util.AbstractList`, `java.util.AbstractSet`以及`java.util.AbstractMap`中所有非抽象方法。
接下来,我们一起来阅读`java.io.InputStream`的部分源码,来感受一下模板方法设计模式是如何在`JDK`中应用的。这里列举`java.io.InputStream`中一个抽象方法和一个非抽象方法,其中非抽象方法就是模板设计模式中的重要角色——模板。
~~~javascript
public int read(byte b[], int off, int len) throws IOException {
if (b == null) {
throw new NullPointerException();
} else if (off < 0 || len < 0 || len > b.length - off) {
throw new IndexOutOfBoundsException();
} else if (len == 0) {
return 0;
}
int c = read();
if (c == -1) {
return -1;
}
b[off] = (byte)c;
int i = 1;
try {
for (; i < len ; i++) {
c = read();
if (c == -1) {
break;
}
b[off + i] = (byte)c;
}
} catch (IOException ee) {
}
return i;
}
public abstract int read() throws IOException;
~~~
上面的非抽象方法给定了从输入流中读取数据的具体流程,而如何从输入流中读取,却没有给出具体的实现方法,需要`java.io.InputStream`这个抽象类的子类来具体实现read方法。
#### 手动实现模板方法设计模式
也许阅读到这里,你对模板方法设计模式还没有一个清晰的认识,没关系,接下来将从最简单的示例开始,来展现模板方法设计模式的基本用法和原理。 我们选择上面问题引入中的“玩游戏”,使用代码来具体实现模板方法设计模式。首先,我们需要一个抽象类,这个抽象类有可变内容和不可变内容,可变内容就是该抽象类拥有抽象方法,这就需要子类去实现它,不同的子类对其实现方式往往是不同的;不可变内容就是该抽象类拥有非抽象方法,这个抽象方法往往是由`final`来修饰,它不允许子类来覆盖它,它就是模板方法,它规定了各个抽象方法的执行流程,也就是说,当子类来调用这个模板方法的时候,各个抽象方法实现方式虽然不同,但是他们的执行流程和顺序确实一致的。这个就是模板方法设计模式的基本原理。我们将模板方法设计模式类图设计如下:
![](https://ask.qcloudimg.com/http-save/yehe-2413148/hf8y7z6twy.png?imageView2/2/w/1620)
* **抽象类Game**
~~~javascript
package cn.itlemon.design.pattern.chapter03.template.method;
/**
* 模板方法设计模式主要抽象类
*
* @author jiangpingping
* @date 2018/9/14 下午3:22
*/
public abstract class Game {
/**
* 初始化游戏
*/
public abstract void initialize();
/**
* 开始游戏
*/
public abstract void startPlay();
/**
* 结束游戏
*/
public abstract void endPlay();
/**
* 模板方法:确定了游戏的流程
*/
public final void playGame() {
initialize();
startPlay();
endPlay();
}
}
~~~
注意观察这个抽象类,它有可变内容`initialize`、`startPlay`、`endPlay`三个抽象方法,有一个不可变内容`playGame`方法,其中不可变内容`playGame`方法规定了上面三个抽象方法的执行顺序。
* **子类BasketBallGame**
~~~javascript
package cn.itlemon.design.pattern.chapter03.template.method;
/**
* 篮球游戏?
*
* @author jiangpingping
* @date 2018/9/14 下午3:27
*/
public class BasketBallGame extends Game {
@Override
public void initialize() {
System.out.println("Basketball Game Initialized! Start playing.");
}
@Override
public void startPlay() {
System.out.println("Basketball Game Started. Enjoy the game!");
}
@Override
public void endPlay() {
System.out.println("Basketball Game Finished!");
}
}
~~~
* **子类FootBallGame**
~~~javascript
package cn.itlemon.design.pattern.chapter03.template.method;
/**
* 足球游戏⚽️
*
* @author jiangpingping
* @date 2018/9/14 下午3:30
*/
public class FootBallGame extends Game {
@Override
public void initialize() {
System.out.println("Football Game Initialized! Start playing.");
}
@Override
public void startPlay() {
System.out.println("Football Game Started. Enjoy the game!");
}
@Override
public void endPlay() {
System.out.println("Football Game Finished!");
}
}
~~~
这两个子类都继承了`Game`这抽象类,并且重写了三个抽象方法,这正印证了模板方法设计模式的定义:`在父类中定义好处理流程的框架,在子类中实现具体处理`。
* **测试类Main**
~~~javascript
package cn.itlemon.design.pattern.chapter03.template.method;
/**
* @author jiangpingping
* @date 2018/9/14 下午3:32
*/
public class Main {
public static void main(String[] args) {
Game basketBallGame = new BasketBallGame();
Game footBallGame = new FootBallGame();
basketBallGame.playGame();
System.out.println();
footBallGame.playGame();
}
}
~~~
在该测试类中,我们分别创建了两个子类的对象,并将这两个对象保存在父类的变量中,当分别调用`playGame`方法的时候,和我们预计想一致,按照指定的顺序将三个可变方法进行了调用,但不同子类的具体实现是不一样的。
~~~javascript
Basketball Game Initialized! Start playing.
Basketball Game Started. Enjoy the game!
Basketball Game Finished!
Football Game Initialized! Start playing.
Football Game Started. Enjoy the game!
Football Game Finished!
~~~
#### 浅析模板方法模式中的重要角色
在模板方法设计模式中,主要角色只有两个,分别是:描述抽象方法和模板方法的抽象类,以及实现抽象方法的具体子类。
* **AbstractClass(抽象类)**
`AbstractClass`角色主要负责实现模板方法,并且还负责声明模板方法中用到的抽象方法,这些抽象方法由具体的子类来进行实现,模板方法负责规定这些抽象方法的调用顺序。在本次示例中,该角色由`Game`来扮演。
* **ConcreteClass(具体类)**
`ConcreteClass`角色主要负责实现`AbstractClass`角色中声明的抽象方法,不同的`ConcreteClass`对这些抽象方法实现的方式不一样的,但是由于在父类中规定了这些抽象方法的调用顺序,所有,即使具体的实现方式不一样,但是最终的执行顺序都是一致的。
#### 模板方法模式UML类图
模板方法设计模式`UML`类图如下所示:
![](https://ask.qcloudimg.com/http-save/yehe-2413148/136bopks3w.png?imageView2/2/w/1620)
#### 为什么要使用模板方法模式
究竟使用模板方法模式可以给我们的代码带来什么好处呢?它的主要优点就是在父类中编写好了算法,在子类中无需重复编写,如果算法有问题,那么只需要修改父类中模板方法即可。 还有重要的一点就是,在使用父类类型变量保存子类实例对象的时候,无需使用`instanceof`等指定子类的具体类型,也可以直接调用模板方法。
- 一.JVM
- 1.1 java代码是怎么运行的
- 1.2 JVM的内存区域
- 1.3 JVM运行时内存
- 1.4 JVM内存分配策略
- 1.5 JVM类加载机制与对象的生命周期
- 1.6 常用的垃圾回收算法
- 1.7 JVM垃圾收集器
- 1.8 CMS垃圾收集器
- 1.9 G1垃圾收集器
- 2.面试相关文章
- 2.1 可能是把Java内存区域讲得最清楚的一篇文章
- 2.0 GC调优参数
- 2.1GC排查系列
- 2.2 内存泄漏和内存溢出
- 2.2.3 深入理解JVM-hotspot虚拟机对象探秘
- 1.10 并发的可达性分析相关问题
- 二.Java集合架构
- 1.ArrayList深入源码分析
- 2.Vector深入源码分析
- 3.LinkedList深入源码分析
- 4.HashMap深入源码分析
- 5.ConcurrentHashMap深入源码分析
- 6.HashSet,LinkedHashSet 和 LinkedHashMap
- 7.容器中的设计模式
- 8.集合架构之面试指南
- 9.TreeSet和TreeMap
- 三.Java基础
- 1.基础概念
- 1.1 Java程序初始化的顺序是怎么样的
- 1.2 Java和C++的区别
- 1.3 反射
- 1.4 注解
- 1.5 泛型
- 1.6 字节与字符的区别以及访问修饰符
- 1.7 深拷贝与浅拷贝
- 1.8 字符串常量池
- 2.面向对象
- 3.关键字
- 4.基本数据类型与运算
- 5.字符串与数组
- 6.异常处理
- 7.Object 通用方法
- 8.Java8
- 8.1 Java 8 Tutorial
- 8.2 Java 8 数据流(Stream)
- 8.3 Java 8 并发教程:线程和执行器
- 8.4 Java 8 并发教程:同步和锁
- 8.5 Java 8 并发教程:原子变量和 ConcurrentMap
- 8.6 Java 8 API 示例:字符串、数值、算术和文件
- 8.7 在 Java 8 中避免 Null 检查
- 8.8 使用 Intellij IDEA 解决 Java 8 的数据流问题
- 四.Java 并发编程
- 1.线程的实现/创建
- 2.线程生命周期/状态转换
- 3.线程池
- 4.线程中的协作、中断
- 5.Java锁
- 5.1 乐观锁、悲观锁和自旋锁
- 5.2 Synchronized
- 5.3 ReentrantLock
- 5.4 公平锁和非公平锁
- 5.3.1 说说ReentrantLock的实现原理,以及ReentrantLock的核心源码是如何实现的?
- 5.5 锁优化和升级
- 6.多线程的上下文切换
- 7.死锁的产生和解决
- 8.J.U.C(java.util.concurrent)
- 0.简化版(快速复习用)
- 9.锁优化
- 10.Java 内存模型(JMM)
- 11.ThreadLocal详解
- 12 CAS
- 13.AQS
- 0.ArrayBlockingQueue和LinkedBlockingQueue的实现原理
- 1.DelayQueue的实现原理
- 14.Thread.join()实现原理
- 15.PriorityQueue 的特性和原理
- 16.CyclicBarrier的实际使用场景
- 五.Java I/O NIO
- 1.I/O模型简述
- 2.Java NIO之缓冲区
- 3.JAVA NIO之文件通道
- 4.Java NIO之套接字通道
- 5.Java NIO之选择器
- 6.基于 Java NIO 实现简单的 HTTP 服务器
- 7.BIO-NIO-AIO
- 8.netty(一)
- 9.NIO面试题
- 六.Java设计模式
- 1.单例模式
- 2.策略模式
- 3.模板方法
- 4.适配器模式
- 5.简单工厂
- 6.门面模式
- 7.代理模式
- 七.数据结构和算法
- 1.什么是红黑树
- 2.二叉树
- 2.1 二叉树的前序、中序、后序遍历
- 3.排序算法汇总
- 4.java实现链表及链表的重用操作
- 4.1算法题-链表反转
- 5.图的概述
- 6.常见的几道字符串算法题
- 7.几道常见的链表算法题
- 8.leetcode常见算法题1
- 9.LRU缓存策略
- 10.二进制及位运算
- 10.1.二进制和十进制转换
- 10.2.位运算
- 11.常见链表算法题
- 12.算法好文推荐
- 13.跳表
- 八.Spring 全家桶
- 1.Spring IOC
- 2.Spring AOP
- 3.Spring 事务管理
- 4.SpringMVC 运行流程和手动实现
- 0.Spring 核心技术
- 5.spring如何解决循环依赖问题
- 6.springboot自动装配原理
- 7.Spring中的循环依赖解决机制中,为什么要三级缓存,用二级缓存不够吗
- 8.beanFactory和factoryBean有什么区别
- 九.数据库
- 1.mybatis
- 1.1 MyBatis-# 与 $ 区别以及 sql 预编译
- Mybatis系列1-Configuration
- Mybatis系列2-SQL执行过程
- Mybatis系列3-之SqlSession
- Mybatis系列4-之Executor
- Mybatis系列5-StatementHandler
- Mybatis系列6-MappedStatement
- Mybatis系列7-参数设置揭秘(ParameterHandler)
- Mybatis系列8-缓存机制
- 2.浅谈聚簇索引和非聚簇索引的区别
- 3.mysql 证明为什么用limit时,offset很大会影响性能
- 4.MySQL中的索引
- 5.数据库索引2
- 6.面试题收集
- 7.MySQL行锁、表锁、间隙锁详解
- 8.数据库MVCC详解
- 9.一条SQL查询语句是如何执行的
- 10.MySQL 的 crash-safe 原理解析
- 11.MySQL 性能优化神器 Explain 使用分析
- 12.mysql中,一条update语句执行的过程是怎么样的?期间用到了mysql的哪些log,分别有什么作用
- 十.Redis
- 0.快速复习回顾Redis
- 1.通俗易懂的Redis数据结构基础教程
- 2.分布式锁(一)
- 3.分布式锁(二)
- 4.延时队列
- 5.位图Bitmaps
- 6.Bitmaps(位图)的使用
- 7.Scan
- 8.redis缓存雪崩、缓存击穿、缓存穿透
- 9.Redis为什么是单线程、及高并发快的3大原因详解
- 10.布隆过滤器你值得拥有的开发利器
- 11.Redis哨兵、复制、集群的设计原理与区别
- 12.redis的IO多路复用
- 13.相关redis面试题
- 14.redis集群
- 十一.中间件
- 1.RabbitMQ
- 1.1 RabbitMQ实战,hello world
- 1.2 RabbitMQ 实战,工作队列
- 1.3 RabbitMQ 实战, 发布订阅
- 1.4 RabbitMQ 实战,路由
- 1.5 RabbitMQ 实战,主题
- 1.6 Spring AMQP 的 AMQP 抽象
- 1.7 Spring AMQP 实战 – 整合 RabbitMQ 发送邮件
- 1.8 RabbitMQ 的消息持久化与 Spring AMQP 的实现剖析
- 1.9 RabbitMQ必备核心知识
- 2.RocketMQ 的几个简单问题与答案
- 2.Kafka
- 2.1 kafka 基础概念和术语
- 2.2 Kafka的重平衡(Rebalance)
- 2.3.kafka日志机制
- 2.4 kafka是pull还是push的方式传递消息的?
- 2.5 Kafka的数据处理流程
- 2.6 Kafka的脑裂预防和处理机制
- 2.7 Kafka中partition副本的Leader选举机制
- 2.8 如果Leader挂了的时候,follower没来得及同步,是否会出现数据不一致
- 2.9 kafka的partition副本是否会出现脑裂情况
- 十二.Zookeeper
- 0.什么是Zookeeper(漫画)
- 1.使用docker安装Zookeeper伪集群
- 3.ZooKeeper-Plus
- 4.zk实现分布式锁
- 5.ZooKeeper之Watcher机制
- 6.Zookeeper之选举及数据一致性
- 十三.计算机网络
- 1.进制转换:二进制、八进制、十六进制、十进制之间的转换
- 2.位运算
- 3.计算机网络面试题汇总1
- 十四.Docker
- 100.面试题收集合集
- 1.美团面试常见问题总结
- 2.b站部分面试题
- 3.比心面试题
- 4.腾讯面试题
- 5.哈罗部分面试
- 6.笔记
- 十五.Storm
- 1.Storm和流处理简介
- 2.Storm 核心概念详解
- 3.Storm 单机版本环境搭建
- 4.Storm 集群环境搭建
- 5.Storm 编程模型详解
- 6.Storm 项目三种打包方式对比分析
- 7.Storm 集成 Redis 详解
- 8.Storm 集成 HDFS 和 HBase
- 9.Storm 集成 Kafka
- 十六.Elasticsearch
- 1.初识ElasticSearch
- 2.文档基本CRUD、集群健康检查
- 3.shard&replica
- 4.document核心元数据解析及ES的并发控制
- 5.document的批量操作及数据路由原理
- 6.倒排索引
- 十七.分布式相关
- 1.分布式事务解决方案一网打尽
- 2.关于xxx怎么保证高可用的问题
- 3.一致性hash原理与实现
- 4.微服务注册中心 Nacos 比 Eureka的优势
- 5.Raft 协议算法
- 6.为什么微服务架构中需要网关
- 0.CAP与BASE理论
- 十八.Dubbo
- 1.快速掌握Dubbo常规应用
- 2.Dubbo应用进阶
- 3.Dubbo调用模块详解
- 4.Dubbo调用模块源码分析
- 6.Dubbo协议模块