在我们平时开发过程中,会有一些 bool 型数据需要存取,比如用户一年的签到记录,签了是 1,没签是 0,要记录 365 天。如果使用普通的 key/value,每个用户要记录 365 个,当用户上亿的时候,需要的存储空间是惊人的。
为了解决这个问题,Redis 提供了位图数据结构,这样每天的签到记录只占据一个位,365 天就是 365 个位,46 个字节 (一个稍长一点的字符串) 就可以完全容纳下,这就大大节约了存储空间。
![](https://user-gold-cdn.xitu.io/2018/7/2/1645926f4520d0ce?imageslim)
位图不是特殊的数据结构,它的内容其实就是普通的字符串,也就是 byte 数组。我们可以使用普通的 get/set 直接获取和设置整个位图的内容,也可以使用位图操作 getbit/setbit 等将 byte 数组看成「位数组」来处理。
当我们要统计月活的时候,因为需要去重,需要使用 set 来记录所有活跃用户的 id,这非常浪费内存。这时就可以考虑使用位图来标记用户的活跃状态。每个用户会都在这个位图的一个确定位置上,0 表示不活跃,1 表示活跃。然后到月底遍历一次位图就可以得到月度活跃用户数。不过这个方法也是有条件的,那就是 userid 是整数连续的,并且活跃占比较高,否则可能得不偿失。
本节略显枯燥,如果读者看的有点蒙,这是正常现象,读者可以跳过阅读下一节。以老钱的经验,在面试中有 Redis 位图使用经验的同学很少,如果你对 Redis 的位图有所了解,它将会是你的面试加分项。
## 基本使用
Redis 的位数组是自动扩展,如果设置了某个偏移位置超出了现有的内容范围,就会自动将位数组进行零扩充。
接下来我们使用位操作将字符串设置为 hello (不是直接使用 set 指令),首先我们需要得到 hello 的 ASCII 码,用 Python 命令行可以很方便地得到每个字符的 ASCII 码的二进制值。
~~~
>>> bin(ord('h'))
'0b1101000' # 高位 -> 低位
>>> bin(ord('e'))
'0b1100101'
>>> bin(ord('l'))
'0b1101100'
>>> bin(ord('l'))
'0b1101100'
>>> bin(ord('o'))
'0b1101111'
~~~
![](https://user-gold-cdn.xitu.io/2018/7/2/16459860644097de?imageslim)
接下来我们使用 redis-cli 设置第一个字符,也就是位数组的前 8 位,我们只需要设置值为 1 的位,如上图所示,h 字符只有 1/2/4 位需要设置,e 字符只有 9/10/13/15 位需要设置。值得注意的是位数组的顺序和字符的位顺序是相反的。
~~~
127.0.0.1:6379> setbit s 1 1
(integer) 0
127.0.0.1:6379> setbit s 2 1
(integer) 0
127.0.0.1:6379> setbit s 4 1
(integer) 0
127.0.0.1:6379> setbit s 9 1
(integer) 0
127.0.0.1:6379> setbit s 10 1
(integer) 0
127.0.0.1:6379> setbit s 13 1
(integer) 0
127.0.0.1:6379> setbit s 15 1
(integer) 0
127.0.0.1:6379> get s
"he"
~~~
上面这个例子可以理解为「零存整取」,同样我们还也可以「零存零取」,「整存零取」。「零存」就是使用 setbit 对位值进行逐个设置,「整存」就是使用字符串一次性填充所有位数组,覆盖掉旧值。
**零存零取**
~~~
127.0.0.1:6379> setbit w 1 1
(integer) 0
127.0.0.1:6379> setbit w 2 1
(integer) 0
127.0.0.1:6379> setbit w 4 1
(integer) 0
127.0.0.1:6379> getbit w 1 # 获取某个具体位置的值 0/1
(integer) 1
127.0.0.1:6379> getbit w 2
(integer) 1
127.0.0.1:6379> getbit w 4
(integer) 1
127.0.0.1:6379> getbit w 5
(integer) 0
~~~
**整存零取**
~~~
127.0.0.1:6379> set w h # 整存
(integer) 0
127.0.0.1:6379> getbit w 1
(integer) 1
127.0.0.1:6379> getbit w 2
(integer) 1
127.0.0.1:6379> getbit w 4
(integer) 1
127.0.0.1:6379> getbit w 5
(integer) 0
~~~
如果对应位的字节是不可打印字符,redis-cli 会显示该字符的 16 进制形式。
~~~
127.0.0.1:6379> setbit x 0 1
(integer) 0
127.0.0.1:6379> setbit x 1 1
(integer) 0
127.0.0.1:6379> get x
"\xc0"
~~~
## 统计和查找
Redis 提供了位图统计指令 bitcount 和位图查找指令 bitpos,bitcount 用来统计指定位置范围内 1 的个数,bitpos 用来查找指定范围内出现的第一个 0 或 1。
比如我们可以通过 bitcount 统计用户一共签到了多少天,通过 bitpos 指令查找用户从哪一天开始第一次签到。如果指定了范围参数`[start, end]`,就可以统计在某个时间范围内用户签到了多少天,用户自某天以后的哪天开始签到。
遗憾的是, start 和 end 参数是字节索引,也就是说指定的位范围必须是 8 的倍数,而不能任意指定。这很奇怪,我表示不是很能理解 Antirez 为什么要这样设计。因为这个设计,我们无法直接计算某个月内用户签到了多少天,而必须要将这个月所覆盖的字节内容全部取出来 (getrange 可以取出字符串的子串) 然后在内存里进行统计,这个非常繁琐。
接下来我们简单试用一下 bitcount 指令和 bitpos 指令:
~~~
127.0.0.1:6379> set w hello
OK
127.0.0.1:6379> bitcount w
(integer) 21
127.0.0.1:6379> bitcount w 0 0 # 第一个字符中 1 的位数
(integer) 3
127.0.0.1:6379> bitcount w 0 1 # 前两个字符中 1 的位数
(integer) 7
127.0.0.1:6379> bitpos w 0 # 第一个 0 位
(integer) 0
127.0.0.1:6379> bitpos w 1 # 第一个 1 位
(integer) 1
127.0.0.1:6379> bitpos w 1 1 1 # 从第二个字符算起,第一个 1 位
(integer) 9
127.0.0.1:6379> bitpos w 1 2 2 # 从第三个字符算起,第一个 1 位
(integer) 17
~~~
## 魔术指令 bitfield
前文我们设置 (setbit) 和获取 (getbit) 指定位的值都是单个位的,如果要一次操作多个位,就必须使用管道来处理。
不过 Redis 的 3.2 版本以后新增了一个功能强大的指令,有了这条指令,不用管道也可以一次进行多个位的操作。
bitfield 有三个子指令,分别是 get/set/incrby,它们都可以对指定位片段进行读写,但是最多只能处理 64 个连续的位,如果超过 64 位,就得使用多个子指令,bitfield 可以一次执行多个子指令。
![](https://user-gold-cdn.xitu.io/2018/7/2/1645987653a2b337?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)
接下来我们对照着上面的图看个简单的例子:
~~~
127.0.0.1:6379> set w hello
OK
127.0.0.1:6379> bitfield w get u4 0 # 从第一个位开始取 4 个位,结果是无符号数 (u)
(integer) 6
127.0.0.1:6379> bitfield w get u3 2 # 从第三个位开始取 3 个位,结果是无符号数 (u)
(integer) 5
127.0.0.1:6379> bitfield w get i4 0 # 从第一个位开始取 4 个位,结果是有符号数 (i)
1) (integer) 6
127.0.0.1:6379> bitfield w get i3 2 # 从第三个位开始取 3 个位,结果是有符号数 (i)
1) (integer) -3
~~~
所谓有符号数是指获取的位数组中第一个位是符号位,剩下的才是值。如果第一位是 1,那就是负数。无符号数表示非负数,没有符号位,获取的位数组全部都是值。有符号数最多可以获取 64 位,无符号数只能获取 63 位 (因为 Redis 协议中的 integer 是有符号数,最大 64 位,不能传递 64 位无符号值)。如果超出位数限制,Redis 就会告诉你参数错误。
接下来我们一次执行多个子指令:
~~~
127.0.0.1:6379> bitfield w get u4 0 get u3 2 get i4 0 get i3 2
1) (integer) 6
2) (integer) 5
3) (integer) 6
4) (integer) -3
~~~
wow,很魔法有没有!
然后我们使用 set 子指令将第二个字符 e 改成 a,a 的 ASCII 码是 97,返回旧值。
~~~
127.0.0.1:6379> bitfield w set u8 8 97 # 从第 9 个位开始,将接下来的 8 个位用无符号数 97 替换
1) (integer) 101
127.0.0.1:6379> get w
"hallo"
~~~
再看第三个子指令 incrby,它用来对指定范围的位进行自增操作。既然提到自增,就有可能出现溢出。如果增加了正数,会出现上溢,如果增加的是负数,就会出现下溢出。Redis 默认的处理是折返。如果出现了溢出,就将溢出的符号位丢掉。如果是 8 位无符号数 255,加 1 后就会溢出,会全部变零。如果是 8 位有符号数 127,加 1 后就会溢出变成 -128。
接下来我们实践一下这个子指令 incrby :
~~~
127.0.0.1:6379> set w hello
OK
127.0.0.1:6379> bitfield w incrby u4 2 1 # 从第三个位开始,对接下来的 4 位无符号数 +1
1) (integer) 11
127.0.0.1:6379> bitfield w incrby u4 2 1
1) (integer) 12
127.0.0.1:6379> bitfield w incrby u4 2 1
1) (integer) 13
127.0.0.1:6379> bitfield w incrby u4 2 1
1) (integer) 14
127.0.0.1:6379> bitfield w incrby u4 2 1
1) (integer) 15
127.0.0.1:6379> bitfield w incrby u4 2 1 # 溢出折返了
1) (integer) 0
~~~
bitfield 指令提供了溢出策略子指令 overflow,用户可以选择溢出行为,默认是折返 (wrap),还可以选择失败 (fail) 报错不执行,以及饱和截断 (sat),超过了范围就停留在最大最小值。overflow 指令只影响接下来的第一条指令,这条指令执行完后溢出策略会变成默认值折返 (wrap)。
接下来我们分别试试这两个策略的行为
**饱和截断 SAT**
~~~
127.0.0.1:6379> set w hello
OK
127.0.0.1:6379> bitfield w overflow sat incrby u4 2 1
1) (integer) 11
127.0.0.1:6379> bitfield w overflow sat incrby u4 2 1
1) (integer) 12
127.0.0.1:6379> bitfield w overflow sat incrby u4 2 1
1) (integer) 13
127.0.0.1:6379> bitfield w overflow sat incrby u4 2 1
1) (integer) 14
127.0.0.1:6379> bitfield w overflow sat incrby u4 2 1
1) (integer) 15
127.0.0.1:6379> bitfield w overflow sat incrby u4 2 1 # 保持最大值
1) (integer) 15
~~~
**失败不执行 FAIL**
~~~
127.0.0.1:6379> set w hello
OK
127.0.0.1:6379> bitfield w overflow fail incrby u4 2 1
1) (integer) 11
127.0.0.1:6379> bitfield w overflow fail incrby u4 2 1
1) (integer) 12
127.0.0.1:6379> bitfield w overflow fail incrby u4 2 1
1) (integer) 13
127.0.0.1:6379> bitfield w overflow fail incrby u4 2 1
1) (integer) 14
127.0.0.1:6379> bitfield w overflow fail incrby u4 2 1
1) (integer) 15
127.0.0.1:6379> bitfield w overflow fail incrby u4 2 1 # 不执行
1) (nil)
~~~
- 一.JVM
- 1.1 java代码是怎么运行的
- 1.2 JVM的内存区域
- 1.3 JVM运行时内存
- 1.4 JVM内存分配策略
- 1.5 JVM类加载机制与对象的生命周期
- 1.6 常用的垃圾回收算法
- 1.7 JVM垃圾收集器
- 1.8 CMS垃圾收集器
- 1.9 G1垃圾收集器
- 2.面试相关文章
- 2.1 可能是把Java内存区域讲得最清楚的一篇文章
- 2.0 GC调优参数
- 2.1GC排查系列
- 2.2 内存泄漏和内存溢出
- 2.2.3 深入理解JVM-hotspot虚拟机对象探秘
- 1.10 并发的可达性分析相关问题
- 二.Java集合架构
- 1.ArrayList深入源码分析
- 2.Vector深入源码分析
- 3.LinkedList深入源码分析
- 4.HashMap深入源码分析
- 5.ConcurrentHashMap深入源码分析
- 6.HashSet,LinkedHashSet 和 LinkedHashMap
- 7.容器中的设计模式
- 8.集合架构之面试指南
- 9.TreeSet和TreeMap
- 三.Java基础
- 1.基础概念
- 1.1 Java程序初始化的顺序是怎么样的
- 1.2 Java和C++的区别
- 1.3 反射
- 1.4 注解
- 1.5 泛型
- 1.6 字节与字符的区别以及访问修饰符
- 1.7 深拷贝与浅拷贝
- 1.8 字符串常量池
- 2.面向对象
- 3.关键字
- 4.基本数据类型与运算
- 5.字符串与数组
- 6.异常处理
- 7.Object 通用方法
- 8.Java8
- 8.1 Java 8 Tutorial
- 8.2 Java 8 数据流(Stream)
- 8.3 Java 8 并发教程:线程和执行器
- 8.4 Java 8 并发教程:同步和锁
- 8.5 Java 8 并发教程:原子变量和 ConcurrentMap
- 8.6 Java 8 API 示例:字符串、数值、算术和文件
- 8.7 在 Java 8 中避免 Null 检查
- 8.8 使用 Intellij IDEA 解决 Java 8 的数据流问题
- 四.Java 并发编程
- 1.线程的实现/创建
- 2.线程生命周期/状态转换
- 3.线程池
- 4.线程中的协作、中断
- 5.Java锁
- 5.1 乐观锁、悲观锁和自旋锁
- 5.2 Synchronized
- 5.3 ReentrantLock
- 5.4 公平锁和非公平锁
- 5.3.1 说说ReentrantLock的实现原理,以及ReentrantLock的核心源码是如何实现的?
- 5.5 锁优化和升级
- 6.多线程的上下文切换
- 7.死锁的产生和解决
- 8.J.U.C(java.util.concurrent)
- 0.简化版(快速复习用)
- 9.锁优化
- 10.Java 内存模型(JMM)
- 11.ThreadLocal详解
- 12 CAS
- 13.AQS
- 0.ArrayBlockingQueue和LinkedBlockingQueue的实现原理
- 1.DelayQueue的实现原理
- 14.Thread.join()实现原理
- 15.PriorityQueue 的特性和原理
- 16.CyclicBarrier的实际使用场景
- 五.Java I/O NIO
- 1.I/O模型简述
- 2.Java NIO之缓冲区
- 3.JAVA NIO之文件通道
- 4.Java NIO之套接字通道
- 5.Java NIO之选择器
- 6.基于 Java NIO 实现简单的 HTTP 服务器
- 7.BIO-NIO-AIO
- 8.netty(一)
- 9.NIO面试题
- 六.Java设计模式
- 1.单例模式
- 2.策略模式
- 3.模板方法
- 4.适配器模式
- 5.简单工厂
- 6.门面模式
- 7.代理模式
- 七.数据结构和算法
- 1.什么是红黑树
- 2.二叉树
- 2.1 二叉树的前序、中序、后序遍历
- 3.排序算法汇总
- 4.java实现链表及链表的重用操作
- 4.1算法题-链表反转
- 5.图的概述
- 6.常见的几道字符串算法题
- 7.几道常见的链表算法题
- 8.leetcode常见算法题1
- 9.LRU缓存策略
- 10.二进制及位运算
- 10.1.二进制和十进制转换
- 10.2.位运算
- 11.常见链表算法题
- 12.算法好文推荐
- 13.跳表
- 八.Spring 全家桶
- 1.Spring IOC
- 2.Spring AOP
- 3.Spring 事务管理
- 4.SpringMVC 运行流程和手动实现
- 0.Spring 核心技术
- 5.spring如何解决循环依赖问题
- 6.springboot自动装配原理
- 7.Spring中的循环依赖解决机制中,为什么要三级缓存,用二级缓存不够吗
- 8.beanFactory和factoryBean有什么区别
- 九.数据库
- 1.mybatis
- 1.1 MyBatis-# 与 $ 区别以及 sql 预编译
- Mybatis系列1-Configuration
- Mybatis系列2-SQL执行过程
- Mybatis系列3-之SqlSession
- Mybatis系列4-之Executor
- Mybatis系列5-StatementHandler
- Mybatis系列6-MappedStatement
- Mybatis系列7-参数设置揭秘(ParameterHandler)
- Mybatis系列8-缓存机制
- 2.浅谈聚簇索引和非聚簇索引的区别
- 3.mysql 证明为什么用limit时,offset很大会影响性能
- 4.MySQL中的索引
- 5.数据库索引2
- 6.面试题收集
- 7.MySQL行锁、表锁、间隙锁详解
- 8.数据库MVCC详解
- 9.一条SQL查询语句是如何执行的
- 10.MySQL 的 crash-safe 原理解析
- 11.MySQL 性能优化神器 Explain 使用分析
- 12.mysql中,一条update语句执行的过程是怎么样的?期间用到了mysql的哪些log,分别有什么作用
- 十.Redis
- 0.快速复习回顾Redis
- 1.通俗易懂的Redis数据结构基础教程
- 2.分布式锁(一)
- 3.分布式锁(二)
- 4.延时队列
- 5.位图Bitmaps
- 6.Bitmaps(位图)的使用
- 7.Scan
- 8.redis缓存雪崩、缓存击穿、缓存穿透
- 9.Redis为什么是单线程、及高并发快的3大原因详解
- 10.布隆过滤器你值得拥有的开发利器
- 11.Redis哨兵、复制、集群的设计原理与区别
- 12.redis的IO多路复用
- 13.相关redis面试题
- 14.redis集群
- 十一.中间件
- 1.RabbitMQ
- 1.1 RabbitMQ实战,hello world
- 1.2 RabbitMQ 实战,工作队列
- 1.3 RabbitMQ 实战, 发布订阅
- 1.4 RabbitMQ 实战,路由
- 1.5 RabbitMQ 实战,主题
- 1.6 Spring AMQP 的 AMQP 抽象
- 1.7 Spring AMQP 实战 – 整合 RabbitMQ 发送邮件
- 1.8 RabbitMQ 的消息持久化与 Spring AMQP 的实现剖析
- 1.9 RabbitMQ必备核心知识
- 2.RocketMQ 的几个简单问题与答案
- 2.Kafka
- 2.1 kafka 基础概念和术语
- 2.2 Kafka的重平衡(Rebalance)
- 2.3.kafka日志机制
- 2.4 kafka是pull还是push的方式传递消息的?
- 2.5 Kafka的数据处理流程
- 2.6 Kafka的脑裂预防和处理机制
- 2.7 Kafka中partition副本的Leader选举机制
- 2.8 如果Leader挂了的时候,follower没来得及同步,是否会出现数据不一致
- 2.9 kafka的partition副本是否会出现脑裂情况
- 十二.Zookeeper
- 0.什么是Zookeeper(漫画)
- 1.使用docker安装Zookeeper伪集群
- 3.ZooKeeper-Plus
- 4.zk实现分布式锁
- 5.ZooKeeper之Watcher机制
- 6.Zookeeper之选举及数据一致性
- 十三.计算机网络
- 1.进制转换:二进制、八进制、十六进制、十进制之间的转换
- 2.位运算
- 3.计算机网络面试题汇总1
- 十四.Docker
- 100.面试题收集合集
- 1.美团面试常见问题总结
- 2.b站部分面试题
- 3.比心面试题
- 4.腾讯面试题
- 5.哈罗部分面试
- 6.笔记
- 十五.Storm
- 1.Storm和流处理简介
- 2.Storm 核心概念详解
- 3.Storm 单机版本环境搭建
- 4.Storm 集群环境搭建
- 5.Storm 编程模型详解
- 6.Storm 项目三种打包方式对比分析
- 7.Storm 集成 Redis 详解
- 8.Storm 集成 HDFS 和 HBase
- 9.Storm 集成 Kafka
- 十六.Elasticsearch
- 1.初识ElasticSearch
- 2.文档基本CRUD、集群健康检查
- 3.shard&replica
- 4.document核心元数据解析及ES的并发控制
- 5.document的批量操作及数据路由原理
- 6.倒排索引
- 十七.分布式相关
- 1.分布式事务解决方案一网打尽
- 2.关于xxx怎么保证高可用的问题
- 3.一致性hash原理与实现
- 4.微服务注册中心 Nacos 比 Eureka的优势
- 5.Raft 协议算法
- 6.为什么微服务架构中需要网关
- 0.CAP与BASE理论
- 十八.Dubbo
- 1.快速掌握Dubbo常规应用
- 2.Dubbo应用进阶
- 3.Dubbo调用模块详解
- 4.Dubbo调用模块源码分析
- 6.Dubbo协议模块