## 简单泛型
促成泛型出现的最主要的动机之一是为了创建*集合类*,参见 [集合](book/12-Collections.md) 章节。集合用于存放要使用到的对象。数组也是如此,不过集合比数组更加灵活,功能更丰富。几乎所有程序在运行过程中都会涉及到一组对象,因此集合是可复用性最高的类库之一。
我们先看一个只能持有单个对象的类。这个类可以明确指定其持有的对象的类型:
```java
// generics/Holder1.java
class Automobile {}
public class Holder1 {
private Automobile a;
public Holder1(Automobile a) { this.a = a; }
Automobile get() { return a; }
}
```
这个类的可复用性不高,它无法持有其他类型的对象。我们可不希望为碰到的每个类型都编写一个新的类。
在 Java 5 之前,我们可以让这个类直接持有 `Object` 类型的对象:
```java
// generics/ObjectHolder.java
public class ObjectHolder {
private Object a;
public ObjectHolder(Object a) { this.a = a; }
public void set(Object a) { this.a = a; }
public Object get() { return a; }
public static void main(String[] args) {
ObjectHolder h2 = new ObjectHolder(new Automobile());
Automobile a = (Automobile)h2.get();
h2.set("Not an Automobile");
String s = (String)h2.get();
h2.set(1); // 自动装箱为 Integer
Integer x = (Integer)h2.get();
}
}
```
现在,`ObjectHolder` 可以持有任何类型的对象,在上面的示例中,一个 `ObjectHolder` 先后持有了三种不同类型的对象。
一个集合中存储多种不同类型的对象的情况很少见,通常而言,我们只会用集合存储同一种类型的对象。泛型的主要目的之一就是用来约定集合要存储什么类型的对象,并且通过编译器确保规约得以满足。
因此,与其使用 `Object` ,我们更希望先指定一个类型占位符,稍后再决定具体使用什么类型。要达到这个目的,需要使用*类型参数*,用尖括号括住,放在类名后面。然后在使用这个类时,再用实际的类型替换此类型参数。在下面的例子中,`T` 就是类型参数:
```java
// generics/GenericHolder.java
public class GenericHolder<T> {
private T a;
public GenericHolder() {}
public void set(T a) { this.a = a; }
public T get() { return a; }
public static void main(String[] args) {
GenericHolder<Automobile> h3 = new GenericHolder<Automobile>();
h3.set(new Automobile()); // 此处有类型校验
Automobile a = h3.get(); // 无需类型转换
//- h3.set("Not an Automobile"); // 报错
//- h3.set(1); // 报错
}
}
```
创建 `GenericHolder` 对象时,必须指明要持有的对象的类型,将其置于尖括号内,就像 `main()` 中那样使用。然后,你就只能在 `GenericHolder` 中存储该类型(或其子类,因为多态与泛型不冲突)的对象了。当你调用 `get()` 取值时,直接就是正确的类型。
这就是 Java 泛型的核心概念:你只需告诉编译器要使用什么类型,剩下的细节交给它来处理。
你可能注意到 `h3` 的定义非常繁复。在 `=` 左边有 `GenericHolder<Automobile>`, 右边又重复了一次。在 Java 5 中,这种写法被解释成“必要的”,但在 Java 7 中设计者修正了这个问题(新的简写语法随后成为备受欢迎的特性)。以下是简写的例子:
```java
// generics/Diamond.java
class Bob {}
public class Diamond<T> {
public static void main(String[] args) {
GenericHolder<Bob> h3 = new GenericHolder<>();
h3.set(new Bob());
}
}
```
注意,在 `h3` 的定义处,`=` 右边的尖括号是空的(称为“钻石语法”),而不是重复左边的类型信息。在本书剩余部分都会使用这种语法。
一般来说,你可以认为泛型和其他类型差不多,只不过它们碰巧有类型参数罢了。在使用泛型时,你只需要指定它们的名称和类型参数列表即可。
### 一个元组类库
有时一个方法需要能返回多个对象。而 **return** 语句只能返回单个对象,解决方法就是创建一个对象,用它打包想要返回的多个对象。当然,可以在每次需要的时候,专门创建一个类来完成这样的工作。但是有了泛型,我们就可以一劳永逸。同时,还获得了编译时的类型安全。
这个概念称为*元组*,它是将一组对象直接打包存储于单一对象中。可以从该对象读取其中的元素,但不允许向其中存储新对象(这个概念也称为 *数据传输对象* 或 *信使* )。
通常,元组可以具有任意长度,元组中的对象可以是不同类型的。不过,我们希望能够为每个对象指明类型,并且从元组中读取出来时,能够得到正确的类型。要处理不同长度的问题,我们需要创建多个不同的元组。下面是一个可以存储两个对象的元组:
```java
// onjava/Tuple2.java
package onjava;
public class Tuple2<A, B> {
public final A a1;
public final B a2;
public Tuple2(A a, B b) { a1 = a; a2 = b; }
public String rep() { return a1 + ", " + a2; }
@Override
public String toString() {
return "(" + rep() + ")";
}
}
```
构造函数传入要存储的对象。这个元组隐式地保持了其中元素的次序。
初次阅读上面的代码时,你可能认为这违反了 Java 编程的封装原则。`a1` 和 `a2` 应该声明为 **private**,然后提供 `getFirst()` 和 `getSecond()` 取值方法才对呀?考虑下这样做能提供的“安全性”是什么:元组的使用程序可以读取 `a1` 和 `a2` 然后对它们执行任何操作,但无法对 `a1` 和 `a2` 重新赋值。例子中的 `final` 可以实现同样的效果,并且更为简洁明了。
另一种设计思路是允许元组的用户给 `a1` 和 `a2` 重新赋值。然而,采用上例中的形式无疑更加安全,如果用户想存储不同的元素,就会强制他们创建新的 `Tuple2` 对象。
我们可以利用继承机制实现长度更长的元组。添加更多的类型参数就行了:
```java
// onjava/Tuple3.java
package onjava;
public class Tuple3<A, B, C> extends Tuple2<A, B> {
public final C a3;
public Tuple3(A a, B b, C c) {
super(a, b);
a3 = c;
}
@Override
public String rep() {
return super.rep() + ", " + a3;
}
}
// onjava/Tuple4.java
package onjava;
public class Tuple4<A, B, C, D>
extends Tuple3<A, B, C> {
public final D a4;
public Tuple4(A a, B b, C c, D d) {
super(a, b, c);
a4 = d;
}
@Override
public String rep() {
return super.rep() + ", " + a4;
}
}
// onjava/Tuple5.java
package onjava;
public class Tuple5<A, B, C, D, E>
extends Tuple4<A, B, C, D> {
public final E a5;
public Tuple5(A a, B b, C c, D d, E e) {
super(a, b, c, d);
a5 = e;
}
@Override
public String rep() {
return super.rep() + ", " + a5;
}
}
```
演示需要,再定义两个类:
```java
// generics/Amphibian.java
public class Amphibian {}
// generics/Vehicle.java
public class Vehicle {}
```
使用元组时,你只需要定义一个长度适合的元组,将其作为返回值即可。注意下面例子中方法的返回类型:
```java
// generics/TupleTest.java
import onjava.*;
public class TupleTest {
static Tuple2<String, Integer> f() {
// 47 自动装箱为 Integer
return new Tuple2<>("hi", 47);
}
static Tuple3<Amphibian, String, Integer> g() {
return new Tuple3<>(new Amphibian(), "hi", 47);
}
static Tuple4<Vehicle, Amphibian, String, Integer> h() {
return new Tuple4<>(new Vehicle(), new Amphibian(), "hi", 47);
}
static Tuple5<Vehicle, Amphibian, String, Integer, Double> k() {
return new Tuple5<>(new Vehicle(), new Amphibian(), "hi", 47, 11.1);
}
public static void main(String[] args) {
Tuple2<String, Integer> ttsi = f();
System.out.println(ttsi);
// ttsi.a1 = "there"; // 编译错误,因为 final 不能重新赋值
System.out.println(g());
System.out.println(h());
System.out.println(k());
}
}
/* 输出:
(hi, 47)
(Amphibian@1540e19d, hi, 47)
(Vehicle@7f31245a, Amphibian@6d6f6e28, hi, 47)
(Vehicle@330bedb4, Amphibian@2503dbd3, hi, 47, 11.1)
*/
```
有了泛型,你可以很容易地创建元组,令其返回一组任意类型的对象。
通过 `ttsi.a1 = "there"` 语句的报错,我们可以看出,**final** 声明确实可以确保 **public** 字段在对象被构造出来之后就不能重新赋值了。
在上面的程序中,`new` 表达式有些啰嗦。本章稍后会介绍,如何利用 *泛型方法* 简化它们。
### 一个堆栈类
接下来我们看一个稍微复杂一点的例子:堆栈。在 [集合](book/12-Collections.md) 一章中,我们用 `LinkedList` 实现了 `onjava.Stack` 类。在那个例子中,`LinkedList` 本身已经具备了创建堆栈所需的方法。`Stack` 是通过两个泛型类 `Stack<T>` 和 `LinkedList<T>` 的组合来创建。我们可以看出,泛型只不过是一种类型罢了(稍后我们会看到一些例外的情况)。
这次我们不用 `LinkedList` 来实现自己的内部链式存储机制。
```java
// generics/LinkedStack.java
// 用链式结构实现的堆栈
public class LinkedStack<T> {
private static class Node<U> {
U item;
Node<U> next;
Node() { item = null; next = null; }
Node(U item, Node<U> next) {
this.item = item;
this.next = next;
}
boolean end() {
return item == null && next == null;
}
}
private Node<T> top = new Node<>(); // 栈顶
public void push(T item) {
top = new Node<>(item, top);
}
public T pop() {
T result = top.item;
if (!top.end()) {
top = top.next;
}
return result;
}
public static void main(String[] args) {
LinkedStack<String> lss = new LinkedStack<>();
for (String s : "Phasers on stun!".split(" ")) {
lss.push(s);
}
String s;
while ((s = lss.pop()) != null) {
System.out.println(s);
}
}
}
```
输出结果:
```java
stun!
on
Phasers
```
内部类 `Node` 也是一个泛型,它拥有自己的类型参数。
这个例子使用了一个 *末端标识* (end sentinel) 来判断栈何时为空。这个末端标识是在构造 `LinkedStack` 时创建的。然后,每次调用 `push()` 就会创建一个 `Node<T>` 对象,并将其链接到前一个 `Node<T>` 对象。当你调用 `pop()` 方法时,总是返回 `top.item`,然后丢弃当前 `top` 所指向的 `Node<T>`,并将 `top` 指向下一个 `Node<T>`,除非到达末端标识,这时就不能再移动 `top` 了。如果已经到达末端,程序还继续调用 `pop()` 方法,它只能得到 `null`,说明栈已经空了。
### RandomList
作为容器的另一个例子,假设我们需要一个持有特定类型对象的列表,每次调用它的 `select()` 方法时都随机返回一个元素。如果希望这种列表可以适用于各种类型,就需要使用泛型:
```java
// generics/RandomList.java
import java.util.*;
import java.util.stream.*;
public class RandomList<T> extends ArrayList<T> {
private Random rand = new Random(47);
public T select() {
return get(rand.nextInt(size()));
}
public static void main(String[] args) {
RandomList<String> rs = new RandomList<>();
Arrays.stream("The quick brown fox jumped over the lazy brown dog".split(" ")).forEach(rs::add);
IntStream.range(0, 11).forEach(i ->
System.out.print(rs.select() + " "));
}
}
```
输出结果:
```java
brown over fox quick quick dog brown The brown lazy brown
```
`RandomList` 继承了 `ArrayList` 的所有方法。本例中只添加了 `select()` 这个方法。
- 译者的话
- 前言
- 简介
- 第一章 对象的概念
- 抽象
- 接口
- 服务提供
- 封装
- 复用
- 继承
- "是一个"与"像是一个"的关系
- 多态
- 单继承结构
- 集合
- 对象创建与生命周期
- 异常处理
- 本章小结
- 第二章 安装Java和本书用例
- 编辑器
- Shell
- Java安装
- 校验安装
- 安装和运行代码示例
- 第三章 万物皆对象
- 对象操纵
- 对象创建
- 数据存储
- 基本类型的存储
- 高精度数值
- 数组的存储
- 代码注释
- 对象清理
- 作用域
- 对象作用域
- 类的创建
- 类型
- 字段
- 基本类型默认值
- 方法使用
- 返回类型
- 参数列表
- 程序编写
- 命名可见性
- 使用其他组件
- static关键字
- 小试牛刀
- 编译和运行
- 编码风格
- 本章小结
- 第四章 运算符
- 开始使用
- 优先级
- 赋值
- 方法调用中的别名现象
- 算术运算符
- 一元加减运算符
- 递增和递减
- 关系运算符
- 测试对象等价
- 逻辑运算符
- 短路
- 字面值常量
- 下划线
- 指数计数法
- 位运算符
- 移位运算符
- 三元运算符
- 字符串运算符
- 常见陷阱
- 类型转换
- 截断和舍入
- 类型提升
- Java没有sizeof
- 运算符总结
- 本章小结
- 第五章 控制流
- true和false
- if-else
- 迭代语句
- while
- do-while
- for
- 逗号操作符
- for-in 语法
- return
- break 和 continue
- 臭名昭著的 goto
- switch
- switch 字符串
- 本章小结
- 第六章 初始化和清理
- 利用构造器保证初始化
- 方法重载
- 区分重载方法
- 重载与基本类型
- 返回值的重载
- 无参构造器
- this关键字
- 在构造器中调用构造器
- static 的含义
- 垃圾回收器
- finalize()的用途
- 你必须实施清理
- 终结条件
- 垃圾回收器如何工作
- 成员初始化
- 指定初始化
- 构造器初始化
- 初始化的顺序
- 静态数据的初始化
- 显式的静态初始化
- 非静态实例初始化
- 数组初始化
- 动态数组创建
- 可变参数列表
- 枚举类型
- 本章小结
- 第七章 封装
- 包的概念
- 代码组织
- 创建独一无二的包名
- 冲突
- 定制工具库
- 使用 import 改变行为
- 使用包的忠告
- 访问权限修饰符
- 包访问权限
- public: 接口访问权限
- 默认包
- private: 你无法访问
- protected: 继承访问权限
- 包访问权限 Vs Public 构造器
- 接口和实现
- 类访问权限
- 本章小结
- 第八章 复用
- 组合语法
- 继承语法
- 初始化基类
- 带参数的构造函数
- 委托
- 结合组合与继承
- 保证适当的清理
- 名称隐藏
- 组合与继承的选择
- protected
- 向上转型
- 再论组合和继承
- final关键字
- final 数据
- 空白 final
- final 参数
- final 方法
- final 和 private
- final 类
- final 忠告
- 类初始化和加载
- 继承和初始化
- 本章小结
- 第九章 多态
- 向上转型回顾
- 忘掉对象类型
- 转机
- 方法调用绑定
- 产生正确的行为
- 可扩展性
- 陷阱:“重写”私有方法
- 陷阱:属性与静态方法
- 构造器和多态
- 构造器调用顺序
- 继承和清理
- 构造器内部多态方法的行为
- 协变返回类型
- 使用继承设计
- 替代 vs 扩展
- 向下转型与运行时类型信息
- 本章小结
- 第十章 接口
- 抽象类和方法
- 接口创建
- 默认方法
- 多继承
- 接口中的静态方法
- Instrument 作为接口
- 抽象类和接口
- 完全解耦
- 多接口结合
- 使用继承扩展接口
- 结合接口时的命名冲突
- 接口适配
- 接口字段
- 初始化接口中的字段
- 接口嵌套
- 接口和工厂方法模式
- 本章小结
- 第十一章 内部类
- 创建内部类
- 链接外部类
- 使用 .this 和 .new
- 内部类与向上转型
- 内部类方法和作用域
- 匿名内部类
- 嵌套类
- 接口内部的类
- 从多层嵌套类中访问外部类的成员
- 为什么需要内部类
- 闭包与回调
- 内部类与控制框架
- 继承内部类
- 内部类可以被覆盖么?
- 局部内部类
- 内部类标识符
- 本章小结
- 第十二章 集合
- 泛型和类型安全的集合
- 基本概念
- 添加元素组
- 集合的打印
- 迭代器Iterators
- ListIterator
- 链表LinkedList
- 堆栈Stack
- 集合Set
- 映射Map
- 队列Queue
- 优先级队列PriorityQueue
- 集合与迭代器
- for-in和迭代器
- 适配器方法惯用法
- 本章小结
- 简单集合分类
- 第十三章 函数式编程
- 新旧对比
- Lambda表达式
- 递归
- 方法引用
- Runnable接口
- 未绑定的方法引用
- 构造函数引用
- 函数式接口
- 多参数函数式接口
- 缺少基本类型的函数
- 高阶函数
- 闭包
- 作为闭包的内部类
- 函数组合
- 柯里化和部分求值
- 纯函数式编程
- 本章小结
- 第十四章 流式编程
- 流支持
- 流创建
- 随机数流
- int 类型的范围
- generate()
- iterate()
- 流的建造者模式
- Arrays
- 正则表达式
- 中间操作
- 跟踪和调试
- 流元素排序
- 移除元素
- 应用函数到元素
- 在map()中组合流
- Optional类
- 便利函数
- 创建 Optional
- Optional 对象操作
- Optional 流
- 终端操作
- 数组
- 集合
- 组合
- 匹配
- 查找
- 信息
- 数字流信息
- 本章小结
- 第十五章 异常
- 异常概念
- 基本异常
- 异常参数
- 异常捕获
- try 语句块
- 异常处理程序
- 终止与恢复
- 自定义异常
- 异常与记录日志
- 异常声明
- 捕获所有异常
- 多重捕获
- 栈轨迹
- 重新抛出异常
- 精准的重新抛出异常
- 异常链
- Java 标准异常
- 特例:RuntimeException
- 使用 finally 进行清理
- finally 用来做什么?
- 在 return 中使用 finally
- 缺憾:异常丢失
- 异常限制
- 构造器
- Try-With-Resources 用法
- 揭示细节
- 异常匹配
- 其他可选方式
- 历史
- 观点
- 把异常传递给控制台
- 把“被检查的异常”转换为“不检查的异常”
- 异常指南
- 本章小结
- 后记:Exception Bizarro World
- 第十六章 代码校验
- 测试
- 如果没有测试过,它就是不能工作的
- 单元测试
- JUnit
- 测试覆盖率的幻觉
- 前置条件
- 断言(Assertions)
- Java 断言语法
- Guava断言
- 使用断言进行契约式设计
- 检查指令
- 前置条件
- 后置条件
- 不变性
- 放松 DbC 检查或非严格的 DbC
- DbC + 单元测试
- 使用Guava前置条件
- 测试驱动开发
- 测试驱动 vs. 测试优先
- 日志
- 日志会给出正在运行的程序的各种信息
- 日志等级
- 调试
- 使用 JDB 调试
- 图形化调试器
- 基准测试
- 微基准测试
- JMH 的引入
- 剖析和优化
- 优化准则
- 风格检测
- 静态错误分析
- 代码重审
- 结对编程
- 重构
- 重构基石
- 持续集成
- 本章小结
- 第十七章 文件
- 文件和目录路径
- 选取路径部分片段
- 路径分析
- Paths的增减修改
- 目录
- 文件系统
- 路径监听
- 文件查找
- 文件读写
- 本章小结
- 第十八章 字符串
- 字符串的不可变
- +的重载与StringBuilder
- 意外递归
- 字符串操作
- 格式化输出
- printf()
- System.out.format()
- Formatter类
- 格式化修饰符
- Formatter转换
- String.format()
- 一个十六进制转储(dump)工具
- 正则表达式
- 基础
- 创建正则表达式
- 量词
- CharSequence
- Pattern和Matcher
- find()
- 组(Groups)
- start()和end()
- Pattern标记
- split()
- 替换操作
- 正则表达式与 Java I/O
- 扫描输入
- Scanner分隔符
- 用正则表达式扫描
- StringTokenizer类
- 本章小结
- 第十九章 类型信息
- 为什么需要 RTTI
- Class对象
- 类字面常量
- 泛化的Class引用
- cast()方法
- 类型转换检测
- 使用类字面量
- 递归计数
- 一个动态instanceof函数
- 注册工厂
- 类的等价比较
- 反射:运行时类信息
- 类方法提取器
- 动态代理
- Optional类
- 标记接口
- Mock 对象和桩
- 接口和类型
- 本章小结
- 第二十章 泛型
- 简单泛型
- 泛型接口
- 泛型方法
- 复杂模型构建
- 泛型擦除
- 补偿擦除
- 边界
- 通配符
- 问题
- 自限定的类型
- 动态类型安全
- 泛型异常
- 混型
- 潜在类型机制
- 对缺乏潜在类型机制的补偿
- Java8 中的辅助潜在类型
- 总结:类型转换真的如此之糟吗?
- 进阶阅读
- 第二十一章 数组
- 数组特性
- 一等对象
- 返回数组
- 多维数组
- 泛型数组
- Arrays的fill方法
- Arrays的setAll方法
- 增量生成
- 随机生成
- 泛型和基本数组
- 数组元素修改
- 数组并行
- Arrays工具类
- 数组比较
- 数组拷贝
- 流和数组
- 数组排序
- Arrays.sort()的使用
- 并行排序
- binarySearch二分查找
- parallelPrefix并行前缀
- 本章小结
- 第二十二章 枚举
- 基本 enum 特性
- 将静态类型导入用于 enum
- 方法添加
- 覆盖 enum 的方法
- switch 语句中的 enum
- values 方法的神秘之处
- 实现而非继承
- 随机选择
- 使用接口组织枚举
- 使用 EnumSet 替代 Flags
- 使用 EnumMap
- 常量特定方法
- 使用 enum 的职责链
- 使用 enum 的状态机
- 多路分发
- 使用 enum 分发
- 使用常量相关的方法
- 使用 EnumMap 进行分发
- 使用二维数组
- 本章小结
- 第二十三章 注解
- 基本语法
- 定义注解
- 元注解
- 编写注解处理器
- 注解元素
- 默认值限制
- 替代方案
- 注解不支持继承
- 实现处理器
- 使用javac处理注解
- 最简单的处理器
- 更复杂的处理器
- 基于注解的单元测试
- 在 @Unit 中使用泛型
- 实现 @Unit
- 本章小结
- 第二十四章 并发编程
- 术语问题
- 并发的新定义
- 并发的超能力
- 并发为速度而生
- 四句格言
- 1.不要这样做
- 2.没有什么是真的,一切可能都有问题
- 3.它起作用,并不意味着它没有问题
- 4.你必须仍然理解
- 残酷的真相
- 本章其余部分
- 并行流
- 创建和运行任务
- 终止耗时任务
- CompletableFuture类
- 基本用法
- 结合 CompletableFuture
- 模拟
- 异常
- 流异常(Stream Exception)
- 检查性异常
- 死锁
- 构造方法非线程安全
- 复杂性和代价
- 本章小结
- 缺点
- 共享内存陷阱
- This Albatross is Big
- 其他类库
- 考虑为并发设计的语言
- 拓展阅读
- 第二十五章 设计模式
- 概念
- 单例模式
- 模式分类
- 构建应用程序框架
- 面向实现
- 工厂模式
- 动态工厂
- 多态工厂
- 抽象工厂
- 函数对象
- 命令模式
- 策略模式
- 责任链模式
- 改变接口
- 适配器模式(Adapter)
- 外观模式(Façade)
- 包(Package)作为外观模式的变体
- 解释器:运行时的弹性
- 回调
- 多次调度
- 模式重构
- 抽象用法
- 多次派遣
- 访问者模式
- RTTI的优劣
- 本章小结
- 附录:补充
- 附录:编程指南
- 附录:文档注释
- 附录:对象传递和返回
- 附录:流式IO
- 输入流类型
- 输出流类型
- 添加属性和有用的接口
- 通过FilterInputStream 从 InputStream 读取
- 通过 FilterOutputStream 向 OutputStream 写入
- Reader和Writer
- 数据的来源和去处
- 更改流的行为
- 未发生改变的类
- RandomAccessFile类
- IO流典型用途
- 缓冲输入文件
- 从内存输入
- 格式化内存输入
- 基本文件的输出
- 文本文件输出快捷方式
- 存储和恢复数据
- 读写随机访问文件
- 本章小结
- 附录:标准IO
- 附录:新IO
- ByteBuffer
- 数据转换
- 基本类型获取
- 视图缓冲区
- 字节存储次序
- 缓冲区数据操作
- 缓冲区细节
- 内存映射文件
- 性能
- 文件锁定
- 映射文件的部分锁定
- 附录:理解equals和hashCode方法
- 附录:集合主题
- 附录:并发底层原理
- 附录:数据压缩
- 附录:对象序列化
- 附录:静态语言类型检查
- 附录:C++和Java的优良传统
- 附录:成为一名程序员