## 对缺乏潜在类型机制的补偿
尽管 Java 不直接支持潜在类型机制,但是这并不意味着泛型代码不能在不同的类型层次结构之间应用。也就是说,我们仍旧可以创建真正的泛型代码,但是这需要付出一些额外的努力。
### 反射
可以使用的一种方式是反射,下面的 `perform()` 方法就是用了潜在类型机制:
```java
// generics/LatentReflection.java
// Using reflection for latent typing
import java.lang.reflect.*;
// Does not implement Performs:
class Mime {
public void walkAgainstTheWind() {}
public void sit() {
System.out.println("Pretending to sit");
}
public void pushInvisibleWalls() {}
@Override
public String toString() { return "Mime"; }
}
// Does not implement Performs:
class SmartDog {
public void speak() { System.out.println("Woof!"); }
public void sit() { System.out.println("Sitting"); }
public void reproduce() {}
}
class CommunicateReflectively {
public static void perform(Object speaker) {
Class<?> spkr = speaker.getClass();
try {
try {
Method speak = spkr.getMethod("speak");
speak.invoke(speaker);
} catch(NoSuchMethodException e) {
System.out.println(speaker + " cannot speak");
}
try {
Method sit = spkr.getMethod("sit");
sit.invoke(speaker);
} catch(NoSuchMethodException e) {
System.out.println(speaker + " cannot sit");
}
} catch(SecurityException |
IllegalAccessException |
IllegalArgumentException |
InvocationTargetException e) {
throw new RuntimeException(speaker.toString(), e);
}
}
}
public class LatentReflection {
public static void main(String[] args) {
CommunicateReflectively.perform(new SmartDog());
CommunicateReflectively.perform(new Robot());
CommunicateReflectively.perform(new Mime());
}
}
/* Output:
Woof!
Sitting
Click!
Clank!
Mime cannot speak
Pretending to sit
*/
```
上例中,这些类完全是彼此分离的,没有任何公共基类(除了 **Object** )或接口。通过反射, `CommunicateReflectively.perform()` 能够动态地确定所需要的方法是否可用并调用它们。它甚至能够处理 **Mime** 只具有一个必需的方法这一事实,并能够部分实现其目标。
### 将一个方法应用于序列
反射提供了一些有用的可能性,但是它将所有的类型检查都转移到了运行时,因此在许多情况下并不是我们所希望的。如果能够实现编译期类型检查,这通常会更符合要求。但是有可能实现编译期类型检查和潜在类型机制吗?
让我们看一个说明这个问题的示例。假设想要创建一个 `apply()` 方法,它能够将任何方法应用于某个序列中的所有对象。这种情况下使用接口不适合,因为你想要将任何方法应用于一个对象集合,而接口不可能描述任何方法。如何用 Java 来实现这个需求呢?
最初,我们可以用反射来解决这个问题,由于有了 Java 的可变参数,这种方式被证明是相当优雅的:
```java
// generics/Apply.java
import java.lang.reflect.*;
import java.util.*;
public class Apply {
public static <T, S extends Iterable<T>>
void apply(S seq, Method f, Object... args) {
try {
for(T t: seq)
f.invoke(t, args);
} catch(IllegalAccessException |
IllegalArgumentException |
InvocationTargetException e) {
// Failures are programmer errors
throw new RuntimeException(e);
}
}
}
```
在 **Apply.java** 中,异常被转换为 **RuntimeException** ,因为没有多少办法可以从这种异常中恢复——在这种情况下,它们实际上代表着程序员的错误。
为什么我们不只使用 Java 8 方法参考(稍后显示)而不是反射方法 **f** ? 注意,`invoke()` 和 `apply()` 的优点是它们可以接受任意数量的参数。 在某些情况下,灵活性可能至关重要。
为了测试 **Apply** ,我们首先创建一个 **Shape** 类:
```java
// generics/Shape.java
public class Shape {
private static long counter = 0;
private final long id = counter++;
@Override
public String toString() {
return getClass().getSimpleName() + " " + id;
}
public void rotate() {
System.out.println(this + " rotate");
}
public void resize(int newSize) {
System.out.println(this + " resize " + newSize);
}
}
```
被一个子类 **Square** 继承:
```java
// generics/Square.java
public class Square extends Shape {}
```
通过这些,我们可以测试 **Apply**:
```java
// generics/ApplyTest.java
import java.util.*;
import java.util.function.*;
import onjava.*;
public class ApplyTest {
public static
void main(String[] args) throws Exception {
List<Shape> shapes =
Suppliers.create(ArrayList::new, Shape::new, 3);
Apply.apply(shapes, Shape.class.getMethod("rotate"));
Apply.apply(shapes, Shape.class.getMethod("resize", int.class), 7);
List<Square> squares =
Suppliers.create(ArrayList::new, Square::new, 3);
Apply.apply(squares, Shape.class.getMethod("rotate"));
Apply.apply(squares, Shape.class.getMethod("resize", int.class), 7);
Apply.apply(new FilledList<>(Shape::new, 3),
Shape.class.getMethod("rotate"));
Apply.apply(new FilledList<>(Square::new, 3),
Shape.class.getMethod("rotate"));
SimpleQueue<Shape> shapeQ = Suppliers.fill(
new SimpleQueue<>(), SimpleQueue::add,
Shape::new, 3);
Suppliers.fill(shapeQ, SimpleQueue::add,
Square::new, 3);
Apply.apply(shapeQ, Shape.class.getMethod("rotate"));
}
}
/* Output:
Shape 0 rotate
Shape 1 rotate
Shape 2 rotate
Shape 0 resize 7
Shape 1 resize 7
Shape 2 resize 7
Square 3 rotate
Square 4 rotate
Square 5 rotate
Square 3 resize 7
Square 4 resize 7
Square 5 resize 7
Shape 6 rotate
Shape 7 rotate
Shape 8 rotate
Square 9 rotate
Square 10 rotate
Square 11 rotate
Shape 12 rotate
Shape 13 rotate
Shape 14 rotate
Square 15 rotate
Square 16 rotate
Square 17 rotate
*/
```
在 **Apply** 中,我们运气很好,因为碰巧在 Java 中内建了一个由 Java 集合类库使用的 **Iterable** 接口。正由于此, `apply()` 方法可以接受任何实现了 **Iterable** 接口的事物,包括诸如 **List** 这样的所有 **Collection** 类。但是它还可以接受其他任何事物,只要能够使这些事物是 **Iterable** 的——例如,在 `main()` 中使用下面定义的 **SimpleQueue** 类:
```java
// generics/SimpleQueue.java
// A different kind of Iterable collection
import java.util.*;
public class SimpleQueue<T> implements Iterable<T> {
private LinkedList<T> storage = new LinkedList<>();
public void add(T t) { storage.offer(t); }
public T get() { return storage.poll(); }
@Override
public Iterator<T> iterator() {
return storage.iterator();
}
}
```
正如反射解决方案看起来那样优雅,我们必须观察到反射(尽管在 Java 的最新版本中得到了显着改进)通常比非反射实现要慢,因为在运行时发生了很多事情。 但它不应阻止您尝试这种解决方案,这依然是值得考虑的一点。
几乎可以肯定,你会首先使用 Java 8 的函数式方法,并且只有在解决了特殊需求时才诉诸反射。 这里对 **ApplyTest.java** 进行了重写,以利用 Java 8 的流和函数工具:
```java
// generics/ApplyFunctional.java
import java.util.*;
import java.util.stream.*;
import java.util.function.*;
import onjava.*;
public class ApplyFunctional {
public static void main(String[] args) {
Stream.of(
Stream.generate(Shape::new).limit(2),
Stream.generate(Square::new).limit(2))
.flatMap(c -> c) // flatten into one stream
.peek(Shape::rotate)
.forEach(s -> s.resize(7));
new FilledList<>(Shape::new, 2)
.forEach(Shape::rotate);
new FilledList<>(Square::new, 2)
.forEach(Shape::rotate);
SimpleQueue<Shape> shapeQ = Suppliers.fill(
new SimpleQueue<>(), SimpleQueue::add,
Shape::new, 2);
Suppliers.fill(shapeQ, SimpleQueue::add,
Square::new, 2);
shapeQ.forEach(Shape::rotate);
}
}
/* Output:
Shape 0 rotate
Shape 0 resize 7
Shape 1 rotate
Shape 1 resize 7
Square 2 rotate
Square 2 resize 7
Square 3 rotate
Square 3 resize 7
Shape 4 rotate
Shape 5 rotate
Square 6 rotate
Square 7 rotate
Shape 8 rotate
Shape 9 rotate
Square 10 rotate
Square 11 rotate
*/
```
由于使用 Java 8,因此不需要 `Apply.apply()` 。
我们首先生成两个 **Stream** : 一个是 **Shape** ,一个是 **Square** ,并将它们展平为单个流。 尽管 Java 缺少功能语言中经常出现的 `flatten()` ,但是我们可以使用 `flatMap(c-> c)` 产生相同的结果,后者使用身份映射将操作简化为“ **flatten** ”。
我们使用 `peek()` 当做对 `rotate()` 的调用,因为 `peek()` 执行一个操作(此处是出于副作用),并在未更改的情况下传递对象。
注意,使用 **FilledList** 和 **shapeQ** 调用 `forEach()` 比 `Apply.apply()` 代码整洁得多。 在代码简单性和可读性方面,结果比以前的方法好得多。 并且,现在也不可能从 `main()` 引发异常。
- 译者的话
- 前言
- 简介
- 第一章 对象的概念
- 抽象
- 接口
- 服务提供
- 封装
- 复用
- 继承
- "是一个"与"像是一个"的关系
- 多态
- 单继承结构
- 集合
- 对象创建与生命周期
- 异常处理
- 本章小结
- 第二章 安装Java和本书用例
- 编辑器
- Shell
- Java安装
- 校验安装
- 安装和运行代码示例
- 第三章 万物皆对象
- 对象操纵
- 对象创建
- 数据存储
- 基本类型的存储
- 高精度数值
- 数组的存储
- 代码注释
- 对象清理
- 作用域
- 对象作用域
- 类的创建
- 类型
- 字段
- 基本类型默认值
- 方法使用
- 返回类型
- 参数列表
- 程序编写
- 命名可见性
- 使用其他组件
- static关键字
- 小试牛刀
- 编译和运行
- 编码风格
- 本章小结
- 第四章 运算符
- 开始使用
- 优先级
- 赋值
- 方法调用中的别名现象
- 算术运算符
- 一元加减运算符
- 递增和递减
- 关系运算符
- 测试对象等价
- 逻辑运算符
- 短路
- 字面值常量
- 下划线
- 指数计数法
- 位运算符
- 移位运算符
- 三元运算符
- 字符串运算符
- 常见陷阱
- 类型转换
- 截断和舍入
- 类型提升
- Java没有sizeof
- 运算符总结
- 本章小结
- 第五章 控制流
- true和false
- if-else
- 迭代语句
- while
- do-while
- for
- 逗号操作符
- for-in 语法
- return
- break 和 continue
- 臭名昭著的 goto
- switch
- switch 字符串
- 本章小结
- 第六章 初始化和清理
- 利用构造器保证初始化
- 方法重载
- 区分重载方法
- 重载与基本类型
- 返回值的重载
- 无参构造器
- this关键字
- 在构造器中调用构造器
- static 的含义
- 垃圾回收器
- finalize()的用途
- 你必须实施清理
- 终结条件
- 垃圾回收器如何工作
- 成员初始化
- 指定初始化
- 构造器初始化
- 初始化的顺序
- 静态数据的初始化
- 显式的静态初始化
- 非静态实例初始化
- 数组初始化
- 动态数组创建
- 可变参数列表
- 枚举类型
- 本章小结
- 第七章 封装
- 包的概念
- 代码组织
- 创建独一无二的包名
- 冲突
- 定制工具库
- 使用 import 改变行为
- 使用包的忠告
- 访问权限修饰符
- 包访问权限
- public: 接口访问权限
- 默认包
- private: 你无法访问
- protected: 继承访问权限
- 包访问权限 Vs Public 构造器
- 接口和实现
- 类访问权限
- 本章小结
- 第八章 复用
- 组合语法
- 继承语法
- 初始化基类
- 带参数的构造函数
- 委托
- 结合组合与继承
- 保证适当的清理
- 名称隐藏
- 组合与继承的选择
- protected
- 向上转型
- 再论组合和继承
- final关键字
- final 数据
- 空白 final
- final 参数
- final 方法
- final 和 private
- final 类
- final 忠告
- 类初始化和加载
- 继承和初始化
- 本章小结
- 第九章 多态
- 向上转型回顾
- 忘掉对象类型
- 转机
- 方法调用绑定
- 产生正确的行为
- 可扩展性
- 陷阱:“重写”私有方法
- 陷阱:属性与静态方法
- 构造器和多态
- 构造器调用顺序
- 继承和清理
- 构造器内部多态方法的行为
- 协变返回类型
- 使用继承设计
- 替代 vs 扩展
- 向下转型与运行时类型信息
- 本章小结
- 第十章 接口
- 抽象类和方法
- 接口创建
- 默认方法
- 多继承
- 接口中的静态方法
- Instrument 作为接口
- 抽象类和接口
- 完全解耦
- 多接口结合
- 使用继承扩展接口
- 结合接口时的命名冲突
- 接口适配
- 接口字段
- 初始化接口中的字段
- 接口嵌套
- 接口和工厂方法模式
- 本章小结
- 第十一章 内部类
- 创建内部类
- 链接外部类
- 使用 .this 和 .new
- 内部类与向上转型
- 内部类方法和作用域
- 匿名内部类
- 嵌套类
- 接口内部的类
- 从多层嵌套类中访问外部类的成员
- 为什么需要内部类
- 闭包与回调
- 内部类与控制框架
- 继承内部类
- 内部类可以被覆盖么?
- 局部内部类
- 内部类标识符
- 本章小结
- 第十二章 集合
- 泛型和类型安全的集合
- 基本概念
- 添加元素组
- 集合的打印
- 迭代器Iterators
- ListIterator
- 链表LinkedList
- 堆栈Stack
- 集合Set
- 映射Map
- 队列Queue
- 优先级队列PriorityQueue
- 集合与迭代器
- for-in和迭代器
- 适配器方法惯用法
- 本章小结
- 简单集合分类
- 第十三章 函数式编程
- 新旧对比
- Lambda表达式
- 递归
- 方法引用
- Runnable接口
- 未绑定的方法引用
- 构造函数引用
- 函数式接口
- 多参数函数式接口
- 缺少基本类型的函数
- 高阶函数
- 闭包
- 作为闭包的内部类
- 函数组合
- 柯里化和部分求值
- 纯函数式编程
- 本章小结
- 第十四章 流式编程
- 流支持
- 流创建
- 随机数流
- int 类型的范围
- generate()
- iterate()
- 流的建造者模式
- Arrays
- 正则表达式
- 中间操作
- 跟踪和调试
- 流元素排序
- 移除元素
- 应用函数到元素
- 在map()中组合流
- Optional类
- 便利函数
- 创建 Optional
- Optional 对象操作
- Optional 流
- 终端操作
- 数组
- 集合
- 组合
- 匹配
- 查找
- 信息
- 数字流信息
- 本章小结
- 第十五章 异常
- 异常概念
- 基本异常
- 异常参数
- 异常捕获
- try 语句块
- 异常处理程序
- 终止与恢复
- 自定义异常
- 异常与记录日志
- 异常声明
- 捕获所有异常
- 多重捕获
- 栈轨迹
- 重新抛出异常
- 精准的重新抛出异常
- 异常链
- Java 标准异常
- 特例:RuntimeException
- 使用 finally 进行清理
- finally 用来做什么?
- 在 return 中使用 finally
- 缺憾:异常丢失
- 异常限制
- 构造器
- Try-With-Resources 用法
- 揭示细节
- 异常匹配
- 其他可选方式
- 历史
- 观点
- 把异常传递给控制台
- 把“被检查的异常”转换为“不检查的异常”
- 异常指南
- 本章小结
- 后记:Exception Bizarro World
- 第十六章 代码校验
- 测试
- 如果没有测试过,它就是不能工作的
- 单元测试
- JUnit
- 测试覆盖率的幻觉
- 前置条件
- 断言(Assertions)
- Java 断言语法
- Guava断言
- 使用断言进行契约式设计
- 检查指令
- 前置条件
- 后置条件
- 不变性
- 放松 DbC 检查或非严格的 DbC
- DbC + 单元测试
- 使用Guava前置条件
- 测试驱动开发
- 测试驱动 vs. 测试优先
- 日志
- 日志会给出正在运行的程序的各种信息
- 日志等级
- 调试
- 使用 JDB 调试
- 图形化调试器
- 基准测试
- 微基准测试
- JMH 的引入
- 剖析和优化
- 优化准则
- 风格检测
- 静态错误分析
- 代码重审
- 结对编程
- 重构
- 重构基石
- 持续集成
- 本章小结
- 第十七章 文件
- 文件和目录路径
- 选取路径部分片段
- 路径分析
- Paths的增减修改
- 目录
- 文件系统
- 路径监听
- 文件查找
- 文件读写
- 本章小结
- 第十八章 字符串
- 字符串的不可变
- +的重载与StringBuilder
- 意外递归
- 字符串操作
- 格式化输出
- printf()
- System.out.format()
- Formatter类
- 格式化修饰符
- Formatter转换
- String.format()
- 一个十六进制转储(dump)工具
- 正则表达式
- 基础
- 创建正则表达式
- 量词
- CharSequence
- Pattern和Matcher
- find()
- 组(Groups)
- start()和end()
- Pattern标记
- split()
- 替换操作
- 正则表达式与 Java I/O
- 扫描输入
- Scanner分隔符
- 用正则表达式扫描
- StringTokenizer类
- 本章小结
- 第十九章 类型信息
- 为什么需要 RTTI
- Class对象
- 类字面常量
- 泛化的Class引用
- cast()方法
- 类型转换检测
- 使用类字面量
- 递归计数
- 一个动态instanceof函数
- 注册工厂
- 类的等价比较
- 反射:运行时类信息
- 类方法提取器
- 动态代理
- Optional类
- 标记接口
- Mock 对象和桩
- 接口和类型
- 本章小结
- 第二十章 泛型
- 简单泛型
- 泛型接口
- 泛型方法
- 复杂模型构建
- 泛型擦除
- 补偿擦除
- 边界
- 通配符
- 问题
- 自限定的类型
- 动态类型安全
- 泛型异常
- 混型
- 潜在类型机制
- 对缺乏潜在类型机制的补偿
- Java8 中的辅助潜在类型
- 总结:类型转换真的如此之糟吗?
- 进阶阅读
- 第二十一章 数组
- 数组特性
- 一等对象
- 返回数组
- 多维数组
- 泛型数组
- Arrays的fill方法
- Arrays的setAll方法
- 增量生成
- 随机生成
- 泛型和基本数组
- 数组元素修改
- 数组并行
- Arrays工具类
- 数组比较
- 数组拷贝
- 流和数组
- 数组排序
- Arrays.sort()的使用
- 并行排序
- binarySearch二分查找
- parallelPrefix并行前缀
- 本章小结
- 第二十二章 枚举
- 基本 enum 特性
- 将静态类型导入用于 enum
- 方法添加
- 覆盖 enum 的方法
- switch 语句中的 enum
- values 方法的神秘之处
- 实现而非继承
- 随机选择
- 使用接口组织枚举
- 使用 EnumSet 替代 Flags
- 使用 EnumMap
- 常量特定方法
- 使用 enum 的职责链
- 使用 enum 的状态机
- 多路分发
- 使用 enum 分发
- 使用常量相关的方法
- 使用 EnumMap 进行分发
- 使用二维数组
- 本章小结
- 第二十三章 注解
- 基本语法
- 定义注解
- 元注解
- 编写注解处理器
- 注解元素
- 默认值限制
- 替代方案
- 注解不支持继承
- 实现处理器
- 使用javac处理注解
- 最简单的处理器
- 更复杂的处理器
- 基于注解的单元测试
- 在 @Unit 中使用泛型
- 实现 @Unit
- 本章小结
- 第二十四章 并发编程
- 术语问题
- 并发的新定义
- 并发的超能力
- 并发为速度而生
- 四句格言
- 1.不要这样做
- 2.没有什么是真的,一切可能都有问题
- 3.它起作用,并不意味着它没有问题
- 4.你必须仍然理解
- 残酷的真相
- 本章其余部分
- 并行流
- 创建和运行任务
- 终止耗时任务
- CompletableFuture类
- 基本用法
- 结合 CompletableFuture
- 模拟
- 异常
- 流异常(Stream Exception)
- 检查性异常
- 死锁
- 构造方法非线程安全
- 复杂性和代价
- 本章小结
- 缺点
- 共享内存陷阱
- This Albatross is Big
- 其他类库
- 考虑为并发设计的语言
- 拓展阅读
- 第二十五章 设计模式
- 概念
- 单例模式
- 模式分类
- 构建应用程序框架
- 面向实现
- 工厂模式
- 动态工厂
- 多态工厂
- 抽象工厂
- 函数对象
- 命令模式
- 策略模式
- 责任链模式
- 改变接口
- 适配器模式(Adapter)
- 外观模式(Façade)
- 包(Package)作为外观模式的变体
- 解释器:运行时的弹性
- 回调
- 多次调度
- 模式重构
- 抽象用法
- 多次派遣
- 访问者模式
- RTTI的优劣
- 本章小结
- 附录:补充
- 附录:编程指南
- 附录:文档注释
- 附录:对象传递和返回
- 附录:流式IO
- 输入流类型
- 输出流类型
- 添加属性和有用的接口
- 通过FilterInputStream 从 InputStream 读取
- 通过 FilterOutputStream 向 OutputStream 写入
- Reader和Writer
- 数据的来源和去处
- 更改流的行为
- 未发生改变的类
- RandomAccessFile类
- IO流典型用途
- 缓冲输入文件
- 从内存输入
- 格式化内存输入
- 基本文件的输出
- 文本文件输出快捷方式
- 存储和恢复数据
- 读写随机访问文件
- 本章小结
- 附录:标准IO
- 附录:新IO
- ByteBuffer
- 数据转换
- 基本类型获取
- 视图缓冲区
- 字节存储次序
- 缓冲区数据操作
- 缓冲区细节
- 内存映射文件
- 性能
- 文件锁定
- 映射文件的部分锁定
- 附录:理解equals和hashCode方法
- 附录:集合主题
- 附录:并发底层原理
- 附录:数据压缩
- 附录:对象序列化
- 附录:静态语言类型检查
- 附录:C++和Java的优良传统
- 附录:成为一名程序员